/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 183 ms] (4) CpxRelTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) CompleteCoflocoProof [FINISHED, 591 ms] (14) BOUNDS(1, n^1) (15) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRelTRS (17) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (18) typed CpxTrs (19) OrderProof [LOWER BOUND(ID), 0 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 252 ms] (22) proven lower bound (23) LowerBoundPropagationProof [FINISHED, 0 ms] (24) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(x, y) -> x g(a) -> h(a, b, a) i(x) -> f(x, x) h(x, x, y) -> g(x) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encArg(cons_h(x_1, x_2, x_3)) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a encode_h(x_1, x_2, x_3) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encode_b -> b encode_i(x_1) -> i(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(x, y) -> x g(a) -> h(a, b, a) i(x) -> f(x, x) h(x, x, y) -> g(x) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encArg(cons_h(x_1, x_2, x_3)) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a encode_h(x_1, x_2, x_3) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encode_b -> b encode_i(x_1) -> i(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(x, y) -> x g(a) -> h(a, b, a) i(x) -> f(x, x) h(x, x, y) -> g(x) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encArg(cons_h(x_1, x_2, x_3)) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a encode_h(x_1, x_2, x_3) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encode_b -> b encode_i(x_1) -> i(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, y) -> x [1] g(a) -> h(a, b, a) [1] i(x) -> f(x, x) [1] h(x, x, y) -> g(x) [1] encArg(a) -> a [0] encArg(b) -> b [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_g(x_1)) -> g(encArg(x_1)) [0] encArg(cons_i(x_1)) -> i(encArg(x_1)) [0] encArg(cons_h(x_1, x_2, x_3)) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_g(x_1) -> g(encArg(x_1)) [0] encode_a -> a [0] encode_h(x_1, x_2, x_3) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_b -> b [0] encode_i(x_1) -> i(encArg(x_1)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, y) -> x [1] g(a) -> h(a, b, a) [1] i(x) -> f(x, x) [1] h(x, x, y) -> g(x) [1] encArg(a) -> a [0] encArg(b) -> b [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_g(x_1)) -> g(encArg(x_1)) [0] encArg(cons_i(x_1)) -> i(encArg(x_1)) [0] encArg(cons_h(x_1, x_2, x_3)) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_g(x_1) -> g(encArg(x_1)) [0] encode_a -> a [0] encode_h(x_1, x_2, x_3) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_b -> b [0] encode_i(x_1) -> i(encArg(x_1)) [0] The TRS has the following type information: f :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h g :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h a :: a:b:cons_f:cons_g:cons_i:cons_h h :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h b :: a:b:cons_f:cons_g:cons_i:cons_h i :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h encArg :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h cons_f :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h cons_g :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h cons_i :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h cons_h :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h encode_f :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h encode_g :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h encode_a :: a:b:cons_f:cons_g:cons_i:cons_h encode_h :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h encode_b :: a:b:cons_f:cons_g:cons_i:cons_h encode_i :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: encArg(v0) -> null_encArg [0] encode_f(v0, v1) -> null_encode_f [0] encode_g(v0) -> null_encode_g [0] encode_a -> null_encode_a [0] encode_h(v0, v1, v2) -> null_encode_h [0] encode_b -> null_encode_b [0] encode_i(v0) -> null_encode_i [0] g(v0) -> null_g [0] h(v0, v1, v2) -> null_h [0] And the following fresh constants: null_encArg, null_encode_f, null_encode_g, null_encode_a, null_encode_h, null_encode_b, null_encode_i, null_g, null_h ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, y) -> x [1] g(a) -> h(a, b, a) [1] i(x) -> f(x, x) [1] h(x, x, y) -> g(x) [1] encArg(a) -> a [0] encArg(b) -> b [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_g(x_1)) -> g(encArg(x_1)) [0] encArg(cons_i(x_1)) -> i(encArg(x_1)) [0] encArg(cons_h(x_1, x_2, x_3)) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_g(x_1) -> g(encArg(x_1)) [0] encode_a -> a [0] encode_h(x_1, x_2, x_3) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_b -> b [0] encode_i(x_1) -> i(encArg(x_1)) [0] encArg(v0) -> null_encArg [0] encode_f(v0, v1) -> null_encode_f [0] encode_g(v0) -> null_encode_g [0] encode_a -> null_encode_a [0] encode_h(v0, v1, v2) -> null_encode_h [0] encode_b -> null_encode_b [0] encode_i(v0) -> null_encode_i [0] g(v0) -> null_g [0] h(v0, v1, v2) -> null_h [0] The TRS has the following type information: f :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h -> a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h -> a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h g :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h -> a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h a :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h h :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h -> a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h -> a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h -> a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h b :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h i :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h -> a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h encArg :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h -> a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h cons_f :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h -> a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h -> a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h cons_g :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h -> a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h cons_i :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h -> a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h cons_h :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h -> a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h -> a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h -> a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h encode_f :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h -> a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h -> a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h encode_g :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h -> a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h encode_a :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h encode_h :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h -> a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h -> a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h -> a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h encode_b :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h encode_i :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h -> a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h null_encArg :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h null_encode_f :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h null_encode_g :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h null_encode_a :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h null_encode_h :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h null_encode_b :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h null_encode_i :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h null_g :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h null_h :: a:b:cons_f:cons_g:cons_i:cons_h:null_encArg:null_encode_f:null_encode_g:null_encode_a:null_encode_h:null_encode_b:null_encode_i:null_g:null_h Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: a => 0 b => 1 null_encArg => 0 null_encode_f => 0 null_encode_g => 0 null_encode_a => 0 null_encode_h => 0 null_encode_b => 0 null_encode_i => 0 null_g => 0 null_h => 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> i(encArg(x_1)) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> h(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1)) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_g(z) -{ 0 }-> g(encArg(x_1)) :|: x_1 >= 0, z = x_1 encode_g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_h(z, z', z'') -{ 0 }-> h(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, x_3 >= 0, x_2 >= 0, z = x_1, z' = x_2, z'' = x_3 encode_h(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 encode_i(z) -{ 0 }-> i(encArg(x_1)) :|: x_1 >= 0, z = x_1 encode_i(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 f(z, z') -{ 1 }-> x :|: x >= 0, y >= 0, z = x, z' = y g(z) -{ 1 }-> h(0, 1, 0) :|: z = 0 g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 h(z, z', z'') -{ 1 }-> g(x) :|: z' = x, z'' = y, x >= 0, y >= 0, z = x h(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 i(z) -{ 1 }-> f(x, x) :|: x >= 0, z = x Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (13) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V1, V, V6),0,[f(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V6),0,[g(V1, Out)],[V1 >= 0]). eq(start(V1, V, V6),0,[i(V1, Out)],[V1 >= 0]). eq(start(V1, V, V6),0,[h(V1, V, V6, Out)],[V1 >= 0,V >= 0,V6 >= 0]). eq(start(V1, V, V6),0,[encArg(V1, Out)],[V1 >= 0]). eq(start(V1, V, V6),0,[fun(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V6),0,[fun1(V1, Out)],[V1 >= 0]). eq(start(V1, V, V6),0,[fun2(Out)],[]). eq(start(V1, V, V6),0,[fun3(V1, V, V6, Out)],[V1 >= 0,V >= 0,V6 >= 0]). eq(start(V1, V, V6),0,[fun4(Out)],[]). eq(start(V1, V, V6),0,[fun5(V1, Out)],[V1 >= 0]). eq(f(V1, V, Out),1,[],[Out = V3,V3 >= 0,V2 >= 0,V1 = V3,V = V2]). eq(g(V1, Out),1,[h(0, 1, 0, Ret)],[Out = Ret,V1 = 0]). eq(i(V1, Out),1,[f(V4, V4, Ret1)],[Out = Ret1,V4 >= 0,V1 = V4]). eq(h(V1, V, V6, Out),1,[g(V5, Ret2)],[Out = Ret2,V = V5,V6 = V7,V5 >= 0,V7 >= 0,V1 = V5]). eq(encArg(V1, Out),0,[],[Out = 0,V1 = 0]). eq(encArg(V1, Out),0,[],[Out = 1,V1 = 1]). eq(encArg(V1, Out),0,[encArg(V9, Ret0),encArg(V8, Ret11),f(Ret0, Ret11, Ret3)],[Out = Ret3,V9 >= 0,V1 = 1 + V8 + V9,V8 >= 0]). eq(encArg(V1, Out),0,[encArg(V10, Ret01),g(Ret01, Ret4)],[Out = Ret4,V1 = 1 + V10,V10 >= 0]). eq(encArg(V1, Out),0,[encArg(V11, Ret02),i(Ret02, Ret5)],[Out = Ret5,V1 = 1 + V11,V11 >= 0]). eq(encArg(V1, Out),0,[encArg(V14, Ret03),encArg(V13, Ret12),encArg(V12, Ret21),h(Ret03, Ret12, Ret21, Ret6)],[Out = Ret6,V14 >= 0,V1 = 1 + V12 + V13 + V14,V12 >= 0,V13 >= 0]). eq(fun(V1, V, Out),0,[encArg(V16, Ret04),encArg(V15, Ret13),f(Ret04, Ret13, Ret7)],[Out = Ret7,V16 >= 0,V15 >= 0,V1 = V16,V = V15]). eq(fun1(V1, Out),0,[encArg(V17, Ret05),g(Ret05, Ret8)],[Out = Ret8,V17 >= 0,V1 = V17]). eq(fun2(Out),0,[],[Out = 0]). eq(fun3(V1, V, V6, Out),0,[encArg(V20, Ret06),encArg(V18, Ret14),encArg(V19, Ret22),h(Ret06, Ret14, Ret22, Ret9)],[Out = Ret9,V20 >= 0,V19 >= 0,V18 >= 0,V1 = V20,V = V18,V6 = V19]). eq(fun4(Out),0,[],[Out = 1]). eq(fun5(V1, Out),0,[encArg(V21, Ret07),i(Ret07, Ret10)],[Out = Ret10,V21 >= 0,V1 = V21]). eq(encArg(V1, Out),0,[],[Out = 0,V22 >= 0,V1 = V22]). eq(fun(V1, V, Out),0,[],[Out = 0,V24 >= 0,V23 >= 0,V1 = V24,V = V23]). eq(fun1(V1, Out),0,[],[Out = 0,V25 >= 0,V1 = V25]). eq(fun3(V1, V, V6, Out),0,[],[Out = 0,V26 >= 0,V6 = V28,V27 >= 0,V1 = V26,V = V27,V28 >= 0]). eq(fun4(Out),0,[],[Out = 0]). eq(fun5(V1, Out),0,[],[Out = 0,V29 >= 0,V1 = V29]). eq(g(V1, Out),0,[],[Out = 0,V30 >= 0,V1 = V30]). eq(h(V1, V, V6, Out),0,[],[Out = 0,V31 >= 0,V6 = V32,V33 >= 0,V1 = V31,V = V33,V32 >= 0]). input_output_vars(f(V1,V,Out),[V1,V],[Out]). input_output_vars(g(V1,Out),[V1],[Out]). input_output_vars(i(V1,Out),[V1],[Out]). input_output_vars(h(V1,V,V6,Out),[V1,V,V6],[Out]). input_output_vars(encArg(V1,Out),[V1],[Out]). input_output_vars(fun(V1,V,Out),[V1,V],[Out]). input_output_vars(fun1(V1,Out),[V1],[Out]). input_output_vars(fun2(Out),[],[Out]). input_output_vars(fun3(V1,V,V6,Out),[V1,V,V6],[Out]). input_output_vars(fun4(Out),[],[Out]). input_output_vars(fun5(V1,Out),[V1],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. non_recursive : [f/3] 1. recursive : [g/2,h/4] 2. non_recursive : [i/2] 3. recursive [non_tail,multiple] : [encArg/2] 4. non_recursive : [fun/3] 5. non_recursive : [fun1/2] 6. non_recursive : [fun2/1] 7. non_recursive : [fun3/4] 8. non_recursive : [fun4/1] 9. non_recursive : [fun5/2] 10. non_recursive : [start/3] #### Obtained direct recursion through partial evaluation 0. SCC is completely evaluated into other SCCs 1. SCC is partially evaluated into g/2 2. SCC is completely evaluated into other SCCs 3. SCC is partially evaluated into encArg/2 4. SCC is partially evaluated into fun/3 5. SCC is partially evaluated into fun1/2 6. SCC is completely evaluated into other SCCs 7. SCC is partially evaluated into fun3/4 8. SCC is partially evaluated into fun4/1 9. SCC is partially evaluated into fun5/2 10. SCC is partially evaluated into start/3 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations g/2 * CE 12 is refined into CE [32] * CE 13 is refined into CE [33] ### Cost equations --> "Loop" of g/2 * CEs [32,33] --> Loop 15 ### Ranking functions of CR g(V1,Out) #### Partial ranking functions of CR g(V1,Out) ### Specialization of cost equations encArg/2 * CE 16 is refined into CE [34] * CE 17 is refined into CE [35] * CE 19 is refined into CE [36] * CE 20 is refined into CE [37] * CE 18 is refined into CE [38] * CE 15 is refined into CE [39] * CE 14 is refined into CE [40] ### Cost equations --> "Loop" of encArg/2 * CEs [39,40] --> Loop 16 * CEs [38] --> Loop 17 * CEs [37] --> Loop 18 * CEs [36] --> Loop 19 * CEs [34] --> Loop 20 * CEs [35] --> Loop 21 ### Ranking functions of CR encArg(V1,Out) * RF of phase [16,17,18,19]: [V1] #### Partial ranking functions of CR encArg(V1,Out) * Partial RF of phase [16,17,18,19]: - RF of loop [16:1,16:2,16:3,17:1,17:2,18:1,19:1]: V1 ### Specialization of cost equations fun/3 * CE 21 is refined into CE [41,42,43,44,45,46,47,48,49] * CE 22 is refined into CE [50] ### Cost equations --> "Loop" of fun/3 * CEs [47,48,49] --> Loop 22 * CEs [44,45,46,50] --> Loop 23 * CEs [41,42,43] --> Loop 24 ### Ranking functions of CR fun(V1,V,Out) #### Partial ranking functions of CR fun(V1,V,Out) ### Specialization of cost equations fun1/2 * CE 23 is refined into CE [51,52,53] * CE 24 is refined into CE [54] ### Cost equations --> "Loop" of fun1/2 * CEs [51,52,53,54] --> Loop 25 ### Ranking functions of CR fun1(V1,Out) #### Partial ranking functions of CR fun1(V1,Out) ### Specialization of cost equations fun3/4 * CE 25 is refined into CE [55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81] * CE 26 is refined into CE [82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102] * CE 27 is refined into CE [103] ### Cost equations --> "Loop" of fun3/4 * CEs [64,65,66,73,74,75,94,95,96] --> Loop 26 * CEs [58,61,67,70,76,79,85,88,91,97,100] --> Loop 27 * CEs [55,56,57,59,60,62,63,68,69,71,72,77,78,80,81,82,83,84,86,87,89,90,92,93,98,99,101,102,103] --> Loop 28 ### Ranking functions of CR fun3(V1,V,V6,Out) #### Partial ranking functions of CR fun3(V1,V,V6,Out) ### Specialization of cost equations fun4/1 * CE 28 is refined into CE [104] * CE 29 is refined into CE [105] ### Cost equations --> "Loop" of fun4/1 * CEs [104] --> Loop 29 * CEs [105] --> Loop 30 ### Ranking functions of CR fun4(Out) #### Partial ranking functions of CR fun4(Out) ### Specialization of cost equations fun5/2 * CE 30 is refined into CE [106,107,108] * CE 31 is refined into CE [109] ### Cost equations --> "Loop" of fun5/2 * CEs [108] --> Loop 31 * CEs [107,109] --> Loop 32 * CEs [106] --> Loop 33 ### Ranking functions of CR fun5(V1,Out) #### Partial ranking functions of CR fun5(V1,Out) ### Specialization of cost equations start/3 * CE 1 is refined into CE [110] * CE 2 is refined into CE [111] * CE 3 is refined into CE [112] * CE 4 is refined into CE [113] * CE 5 is refined into CE [114] * CE 6 is refined into CE [115,116,117] * CE 7 is refined into CE [118,119,120] * CE 8 is refined into CE [121] * CE 9 is refined into CE [122,123] * CE 10 is refined into CE [124,125] * CE 11 is refined into CE [126,127,128] ### Cost equations --> "Loop" of start/3 * CEs [110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128] --> Loop 34 ### Ranking functions of CR start(V1,V,V6) #### Partial ranking functions of CR start(V1,V,V6) Computing Bounds ===================================== #### Cost of chains of g(V1,Out): * Chain [15]: 1 with precondition: [Out=0,V1>=0] #### Cost of chains of encArg(V1,Out): * Chain [21]: 0 with precondition: [V1=1,Out=1] * Chain [20]: 0 with precondition: [Out=0,V1>=0] * Chain [multiple([16,17,18,19],[[21],[20]])]: 6*it(16)+0 Such that:aux(1) =< V1 it(16) =< aux(1) with precondition: [1>=Out,Out>=0,V1>=Out+1] #### Cost of chains of fun(V1,V,Out): * Chain [24]: 6*s(2)+1 Such that:s(1) =< V s(2) =< s(1) with precondition: [V1=1,Out=1,V>=0] * Chain [23]: 6*s(4)+1 Such that:s(3) =< V s(4) =< s(3) with precondition: [Out=0,V1>=0,V>=0] * Chain [22]: 18*s(6)+6*s(12)+1 Such that:s(11) =< V aux(3) =< V1 s(6) =< aux(3) s(12) =< s(11) with precondition: [1>=Out,V>=0,Out>=0,V1>=Out+1] #### Cost of chains of fun1(V1,Out): * Chain [25]: 6*s(14)+1 Such that:s(13) =< V1 s(14) =< s(13) with precondition: [Out=0,V1>=0] #### Cost of chains of fun3(V1,V,V6,Out): * Chain [28]: 78*s(16)+72*s(20)+48*s(34)+2 Such that:aux(4) =< V1 aux(5) =< V aux(6) =< V6 s(34) =< aux(4) s(16) =< aux(6) s(20) =< aux(5) with precondition: [Out=0,V1>=0,V>=0,V6>=0] * Chain [27]: 36*s(82)+24*s(86)+2 Such that:aux(7) =< V1 aux(8) =< V s(86) =< aux(7) s(82) =< aux(8) with precondition: [V6=1,Out=0,V1>=0,V>=0] * Chain [26]: 18*s(102)+36*s(104)+2 Such that:aux(9) =< V1 aux(10) =< V6 s(104) =< aux(9) s(102) =< aux(10) with precondition: [V=1,Out=0,V1>=0,V6>=0] #### Cost of chains of fun4(Out): * Chain [30]: 0 with precondition: [Out=0] * Chain [29]: 0 with precondition: [Out=1] #### Cost of chains of fun5(V1,Out): * Chain [33]: 2 with precondition: [V1=1,Out=1] * Chain [32]: 2 with precondition: [Out=0,V1>=0] * Chain [31]: 6*s(130)+2 Such that:s(129) =< V1 s(130) =< s(129) with precondition: [1>=Out,Out>=0,V1>=Out+1] #### Cost of chains of start(V1,V,V6): * Chain [34]: 144*s(132)+126*s(134)+96*s(147)+2 Such that:s(145) =< V6 aux(13) =< V1 aux(14) =< V s(132) =< aux(13) s(134) =< aux(14) s(147) =< s(145) with precondition: [] Closed-form bounds of start(V1,V,V6): ------------------------------------- * Chain [34] with precondition: [] - Upper bound: nat(V1)*144+2+nat(V)*126+nat(V6)*96 - Complexity: n ### Maximum cost of start(V1,V,V6): nat(V1)*144+2+nat(V)*126+nat(V6)*96 Asymptotic class: n * Total analysis performed in 494 ms. ---------------------------------------- (14) BOUNDS(1, n^1) ---------------------------------------- (15) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (16) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(x, y) -> x g(a) -> h(a, b, a) i(x) -> f(x, x) h(x, x, y) -> g(x) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encArg(cons_h(x_1, x_2, x_3)) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a encode_h(x_1, x_2, x_3) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encode_b -> b encode_i(x_1) -> i(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (17) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (18) Obligation: Innermost TRS: Rules: f(x, y) -> x g(a) -> h(a, b, a) i(x) -> f(x, x) h(x, x, y) -> g(x) encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encArg(cons_h(x_1, x_2, x_3)) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a encode_h(x_1, x_2, x_3) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encode_b -> b encode_i(x_1) -> i(encArg(x_1)) Types: f :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h g :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h a :: a:b:cons_f:cons_g:cons_i:cons_h h :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h b :: a:b:cons_f:cons_g:cons_i:cons_h i :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h encArg :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h cons_f :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h cons_g :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h cons_i :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h cons_h :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h encode_f :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h encode_g :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h encode_a :: a:b:cons_f:cons_g:cons_i:cons_h encode_h :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h encode_b :: a:b:cons_f:cons_g:cons_i:cons_h encode_i :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h hole_a:b:cons_f:cons_g:cons_i:cons_h1_0 :: a:b:cons_f:cons_g:cons_i:cons_h gen_a:b:cons_f:cons_g:cons_i:cons_h2_0 :: Nat -> a:b:cons_f:cons_g:cons_i:cons_h ---------------------------------------- (19) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: g, h, encArg They will be analysed ascendingly in the following order: g = h g < encArg h < encArg ---------------------------------------- (20) Obligation: Innermost TRS: Rules: f(x, y) -> x g(a) -> h(a, b, a) i(x) -> f(x, x) h(x, x, y) -> g(x) encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encArg(cons_h(x_1, x_2, x_3)) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a encode_h(x_1, x_2, x_3) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encode_b -> b encode_i(x_1) -> i(encArg(x_1)) Types: f :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h g :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h a :: a:b:cons_f:cons_g:cons_i:cons_h h :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h b :: a:b:cons_f:cons_g:cons_i:cons_h i :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h encArg :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h cons_f :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h cons_g :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h cons_i :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h cons_h :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h encode_f :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h encode_g :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h encode_a :: a:b:cons_f:cons_g:cons_i:cons_h encode_h :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h encode_b :: a:b:cons_f:cons_g:cons_i:cons_h encode_i :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h hole_a:b:cons_f:cons_g:cons_i:cons_h1_0 :: a:b:cons_f:cons_g:cons_i:cons_h gen_a:b:cons_f:cons_g:cons_i:cons_h2_0 :: Nat -> a:b:cons_f:cons_g:cons_i:cons_h Generator Equations: gen_a:b:cons_f:cons_g:cons_i:cons_h2_0(0) <=> a gen_a:b:cons_f:cons_g:cons_i:cons_h2_0(+(x, 1)) <=> cons_f(a, gen_a:b:cons_f:cons_g:cons_i:cons_h2_0(x)) The following defined symbols remain to be analysed: h, g, encArg They will be analysed ascendingly in the following order: g = h g < encArg h < encArg ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_a:b:cons_f:cons_g:cons_i:cons_h2_0(n54_0)) -> gen_a:b:cons_f:cons_g:cons_i:cons_h2_0(0), rt in Omega(n54_0) Induction Base: encArg(gen_a:b:cons_f:cons_g:cons_i:cons_h2_0(0)) ->_R^Omega(0) a Induction Step: encArg(gen_a:b:cons_f:cons_g:cons_i:cons_h2_0(+(n54_0, 1))) ->_R^Omega(0) f(encArg(a), encArg(gen_a:b:cons_f:cons_g:cons_i:cons_h2_0(n54_0))) ->_R^Omega(0) f(a, encArg(gen_a:b:cons_f:cons_g:cons_i:cons_h2_0(n54_0))) ->_IH f(a, gen_a:b:cons_f:cons_g:cons_i:cons_h2_0(0)) ->_R^Omega(1) a We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: f(x, y) -> x g(a) -> h(a, b, a) i(x) -> f(x, x) h(x, x, y) -> g(x) encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encArg(cons_h(x_1, x_2, x_3)) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a encode_h(x_1, x_2, x_3) -> h(encArg(x_1), encArg(x_2), encArg(x_3)) encode_b -> b encode_i(x_1) -> i(encArg(x_1)) Types: f :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h g :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h a :: a:b:cons_f:cons_g:cons_i:cons_h h :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h b :: a:b:cons_f:cons_g:cons_i:cons_h i :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h encArg :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h cons_f :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h cons_g :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h cons_i :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h cons_h :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h encode_f :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h encode_g :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h encode_a :: a:b:cons_f:cons_g:cons_i:cons_h encode_h :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h encode_b :: a:b:cons_f:cons_g:cons_i:cons_h encode_i :: a:b:cons_f:cons_g:cons_i:cons_h -> a:b:cons_f:cons_g:cons_i:cons_h hole_a:b:cons_f:cons_g:cons_i:cons_h1_0 :: a:b:cons_f:cons_g:cons_i:cons_h gen_a:b:cons_f:cons_g:cons_i:cons_h2_0 :: Nat -> a:b:cons_f:cons_g:cons_i:cons_h Generator Equations: gen_a:b:cons_f:cons_g:cons_i:cons_h2_0(0) <=> a gen_a:b:cons_f:cons_g:cons_i:cons_h2_0(+(x, 1)) <=> cons_f(a, gen_a:b:cons_f:cons_g:cons_i:cons_h2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (23) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (24) BOUNDS(n^1, INF)