/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^2, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 182 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 284 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 783 ms] (18) BEST (19) proven lower bound (20) LowerBoundPropagationProof [FINISHED, 0 ms] (21) BOUNDS(n^2, INF) (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 0 ms] (24) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: f(0) -> 1 f(s(x)) -> g(x, s(x)) g(0, y) -> y g(s(x), y) -> g(x, +(y, s(x))) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) g(s(x), y) -> g(x, s(+(y, x))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(1) -> 1 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 encode_1 -> 1 encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: f(0) -> 1 f(s(x)) -> g(x, s(x)) g(0, y) -> y g(s(x), y) -> g(x, +(y, s(x))) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) g(s(x), y) -> g(x, s(+(y, x))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(1) -> 1 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 encode_1 -> 1 encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: f(0) -> 1 f(s(x)) -> g(x, s(x)) g(0, y) -> y g(s(x), y) -> g(x, +(y, s(x))) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) g(s(x), y) -> g(x, s(+(y, x))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(1) -> 1 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 encode_1 -> 1 encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: f(0') -> 1' f(s(x)) -> g(x, s(x)) g(0', y) -> y g(s(x), y) -> g(x, +'(y, s(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) g(s(x), y) -> g(x, s(+'(y, x))) The (relative) TRS S consists of the following rules: encArg(0') -> 0' encArg(1') -> 1' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0' encode_1 -> 1' encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: f(0') -> 1' f(s(x)) -> g(x, s(x)) g(0', y) -> y g(s(x), y) -> g(x, +'(y, s(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) g(s(x), y) -> g(x, s(+'(y, x))) encArg(0') -> 0' encArg(1') -> 1' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0' encode_1 -> 1' encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) Types: f :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ 0' :: 0':1':s:cons_f:cons_g:cons_+ 1' :: 0':1':s:cons_f:cons_g:cons_+ s :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ g :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ +' :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encArg :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ cons_f :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ cons_g :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ cons_+ :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encode_f :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encode_0 :: 0':1':s:cons_f:cons_g:cons_+ encode_1 :: 0':1':s:cons_f:cons_g:cons_+ encode_s :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encode_g :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encode_+ :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ hole_0':1':s:cons_f:cons_g:cons_+1_3 :: 0':1':s:cons_f:cons_g:cons_+ gen_0':1':s:cons_f:cons_g:cons_+2_3 :: Nat -> 0':1':s:cons_f:cons_g:cons_+ ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: g, +', encArg They will be analysed ascendingly in the following order: +' < g g < encArg +' < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: f(0') -> 1' f(s(x)) -> g(x, s(x)) g(0', y) -> y g(s(x), y) -> g(x, +'(y, s(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) g(s(x), y) -> g(x, s(+'(y, x))) encArg(0') -> 0' encArg(1') -> 1' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0' encode_1 -> 1' encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) Types: f :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ 0' :: 0':1':s:cons_f:cons_g:cons_+ 1' :: 0':1':s:cons_f:cons_g:cons_+ s :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ g :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ +' :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encArg :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ cons_f :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ cons_g :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ cons_+ :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encode_f :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encode_0 :: 0':1':s:cons_f:cons_g:cons_+ encode_1 :: 0':1':s:cons_f:cons_g:cons_+ encode_s :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encode_g :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encode_+ :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ hole_0':1':s:cons_f:cons_g:cons_+1_3 :: 0':1':s:cons_f:cons_g:cons_+ gen_0':1':s:cons_f:cons_g:cons_+2_3 :: Nat -> 0':1':s:cons_f:cons_g:cons_+ Generator Equations: gen_0':1':s:cons_f:cons_g:cons_+2_3(0) <=> 0' gen_0':1':s:cons_f:cons_g:cons_+2_3(+(x, 1)) <=> s(gen_0':1':s:cons_f:cons_g:cons_+2_3(x)) The following defined symbols remain to be analysed: +', g, encArg They will be analysed ascendingly in the following order: +' < g g < encArg +' < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: +'(gen_0':1':s:cons_f:cons_g:cons_+2_3(a), gen_0':1':s:cons_f:cons_g:cons_+2_3(n4_3)) -> gen_0':1':s:cons_f:cons_g:cons_+2_3(+(n4_3, a)), rt in Omega(1 + n4_3) Induction Base: +'(gen_0':1':s:cons_f:cons_g:cons_+2_3(a), gen_0':1':s:cons_f:cons_g:cons_+2_3(0)) ->_R^Omega(1) gen_0':1':s:cons_f:cons_g:cons_+2_3(a) Induction Step: +'(gen_0':1':s:cons_f:cons_g:cons_+2_3(a), gen_0':1':s:cons_f:cons_g:cons_+2_3(+(n4_3, 1))) ->_R^Omega(1) s(+'(gen_0':1':s:cons_f:cons_g:cons_+2_3(a), gen_0':1':s:cons_f:cons_g:cons_+2_3(n4_3))) ->_IH s(gen_0':1':s:cons_f:cons_g:cons_+2_3(+(a, c5_3))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: f(0') -> 1' f(s(x)) -> g(x, s(x)) g(0', y) -> y g(s(x), y) -> g(x, +'(y, s(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) g(s(x), y) -> g(x, s(+'(y, x))) encArg(0') -> 0' encArg(1') -> 1' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0' encode_1 -> 1' encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) Types: f :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ 0' :: 0':1':s:cons_f:cons_g:cons_+ 1' :: 0':1':s:cons_f:cons_g:cons_+ s :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ g :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ +' :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encArg :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ cons_f :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ cons_g :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ cons_+ :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encode_f :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encode_0 :: 0':1':s:cons_f:cons_g:cons_+ encode_1 :: 0':1':s:cons_f:cons_g:cons_+ encode_s :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encode_g :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encode_+ :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ hole_0':1':s:cons_f:cons_g:cons_+1_3 :: 0':1':s:cons_f:cons_g:cons_+ gen_0':1':s:cons_f:cons_g:cons_+2_3 :: Nat -> 0':1':s:cons_f:cons_g:cons_+ Generator Equations: gen_0':1':s:cons_f:cons_g:cons_+2_3(0) <=> 0' gen_0':1':s:cons_f:cons_g:cons_+2_3(+(x, 1)) <=> s(gen_0':1':s:cons_f:cons_g:cons_+2_3(x)) The following defined symbols remain to be analysed: +', g, encArg They will be analysed ascendingly in the following order: +' < g g < encArg +' < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Innermost TRS: Rules: f(0') -> 1' f(s(x)) -> g(x, s(x)) g(0', y) -> y g(s(x), y) -> g(x, +'(y, s(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) g(s(x), y) -> g(x, s(+'(y, x))) encArg(0') -> 0' encArg(1') -> 1' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0' encode_1 -> 1' encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) Types: f :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ 0' :: 0':1':s:cons_f:cons_g:cons_+ 1' :: 0':1':s:cons_f:cons_g:cons_+ s :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ g :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ +' :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encArg :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ cons_f :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ cons_g :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ cons_+ :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encode_f :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encode_0 :: 0':1':s:cons_f:cons_g:cons_+ encode_1 :: 0':1':s:cons_f:cons_g:cons_+ encode_s :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encode_g :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encode_+ :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ hole_0':1':s:cons_f:cons_g:cons_+1_3 :: 0':1':s:cons_f:cons_g:cons_+ gen_0':1':s:cons_f:cons_g:cons_+2_3 :: Nat -> 0':1':s:cons_f:cons_g:cons_+ Lemmas: +'(gen_0':1':s:cons_f:cons_g:cons_+2_3(a), gen_0':1':s:cons_f:cons_g:cons_+2_3(n4_3)) -> gen_0':1':s:cons_f:cons_g:cons_+2_3(+(n4_3, a)), rt in Omega(1 + n4_3) Generator Equations: gen_0':1':s:cons_f:cons_g:cons_+2_3(0) <=> 0' gen_0':1':s:cons_f:cons_g:cons_+2_3(+(x, 1)) <=> s(gen_0':1':s:cons_f:cons_g:cons_+2_3(x)) The following defined symbols remain to be analysed: g, encArg They will be analysed ascendingly in the following order: g < encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: g(gen_0':1':s:cons_f:cons_g:cons_+2_3(n825_3), gen_0':1':s:cons_f:cons_g:cons_+2_3(b)) -> *3_3, rt in Omega(n825_3 + n825_3^2) Induction Base: g(gen_0':1':s:cons_f:cons_g:cons_+2_3(0), gen_0':1':s:cons_f:cons_g:cons_+2_3(b)) Induction Step: g(gen_0':1':s:cons_f:cons_g:cons_+2_3(+(n825_3, 1)), gen_0':1':s:cons_f:cons_g:cons_+2_3(b)) ->_R^Omega(1) g(gen_0':1':s:cons_f:cons_g:cons_+2_3(n825_3), +'(gen_0':1':s:cons_f:cons_g:cons_+2_3(b), s(gen_0':1':s:cons_f:cons_g:cons_+2_3(n825_3)))) ->_L^Omega(2 + n825_3) g(gen_0':1':s:cons_f:cons_g:cons_+2_3(n825_3), gen_0':1':s:cons_f:cons_g:cons_+2_3(+(+(n825_3, 1), b))) ->_IH *3_3 We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (18) Complex Obligation (BEST) ---------------------------------------- (19) Obligation: Proved the lower bound n^2 for the following obligation: Innermost TRS: Rules: f(0') -> 1' f(s(x)) -> g(x, s(x)) g(0', y) -> y g(s(x), y) -> g(x, +'(y, s(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) g(s(x), y) -> g(x, s(+'(y, x))) encArg(0') -> 0' encArg(1') -> 1' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0' encode_1 -> 1' encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) Types: f :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ 0' :: 0':1':s:cons_f:cons_g:cons_+ 1' :: 0':1':s:cons_f:cons_g:cons_+ s :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ g :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ +' :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encArg :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ cons_f :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ cons_g :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ cons_+ :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encode_f :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encode_0 :: 0':1':s:cons_f:cons_g:cons_+ encode_1 :: 0':1':s:cons_f:cons_g:cons_+ encode_s :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encode_g :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encode_+ :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ hole_0':1':s:cons_f:cons_g:cons_+1_3 :: 0':1':s:cons_f:cons_g:cons_+ gen_0':1':s:cons_f:cons_g:cons_+2_3 :: Nat -> 0':1':s:cons_f:cons_g:cons_+ Lemmas: +'(gen_0':1':s:cons_f:cons_g:cons_+2_3(a), gen_0':1':s:cons_f:cons_g:cons_+2_3(n4_3)) -> gen_0':1':s:cons_f:cons_g:cons_+2_3(+(n4_3, a)), rt in Omega(1 + n4_3) Generator Equations: gen_0':1':s:cons_f:cons_g:cons_+2_3(0) <=> 0' gen_0':1':s:cons_f:cons_g:cons_+2_3(+(x, 1)) <=> s(gen_0':1':s:cons_f:cons_g:cons_+2_3(x)) The following defined symbols remain to be analysed: g, encArg They will be analysed ascendingly in the following order: g < encArg ---------------------------------------- (20) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (21) BOUNDS(n^2, INF) ---------------------------------------- (22) Obligation: Innermost TRS: Rules: f(0') -> 1' f(s(x)) -> g(x, s(x)) g(0', y) -> y g(s(x), y) -> g(x, +'(y, s(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) g(s(x), y) -> g(x, s(+'(y, x))) encArg(0') -> 0' encArg(1') -> 1' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0' encode_1 -> 1' encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) Types: f :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ 0' :: 0':1':s:cons_f:cons_g:cons_+ 1' :: 0':1':s:cons_f:cons_g:cons_+ s :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ g :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ +' :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encArg :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ cons_f :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ cons_g :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ cons_+ :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encode_f :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encode_0 :: 0':1':s:cons_f:cons_g:cons_+ encode_1 :: 0':1':s:cons_f:cons_g:cons_+ encode_s :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encode_g :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ encode_+ :: 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ -> 0':1':s:cons_f:cons_g:cons_+ hole_0':1':s:cons_f:cons_g:cons_+1_3 :: 0':1':s:cons_f:cons_g:cons_+ gen_0':1':s:cons_f:cons_g:cons_+2_3 :: Nat -> 0':1':s:cons_f:cons_g:cons_+ Lemmas: +'(gen_0':1':s:cons_f:cons_g:cons_+2_3(a), gen_0':1':s:cons_f:cons_g:cons_+2_3(n4_3)) -> gen_0':1':s:cons_f:cons_g:cons_+2_3(+(n4_3, a)), rt in Omega(1 + n4_3) g(gen_0':1':s:cons_f:cons_g:cons_+2_3(n825_3), gen_0':1':s:cons_f:cons_g:cons_+2_3(b)) -> *3_3, rt in Omega(n825_3 + n825_3^2) Generator Equations: gen_0':1':s:cons_f:cons_g:cons_+2_3(0) <=> 0' gen_0':1':s:cons_f:cons_g:cons_+2_3(+(x, 1)) <=> s(gen_0':1':s:cons_f:cons_g:cons_+2_3(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_0':1':s:cons_f:cons_g:cons_+2_3(n3879_3)) -> gen_0':1':s:cons_f:cons_g:cons_+2_3(n3879_3), rt in Omega(0) Induction Base: encArg(gen_0':1':s:cons_f:cons_g:cons_+2_3(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_0':1':s:cons_f:cons_g:cons_+2_3(+(n3879_3, 1))) ->_R^Omega(0) s(encArg(gen_0':1':s:cons_f:cons_g:cons_+2_3(n3879_3))) ->_IH s(gen_0':1':s:cons_f:cons_g:cons_+2_3(c3880_3)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (24) BOUNDS(1, INF)