/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 155 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 282 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 805 ms] (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 0 ms] (20) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sum(x), s(x)) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sum(x), s(x)) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sum(x), s(x)) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x), s(x)) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) The (relative) TRS S consists of the following rules: encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x), s(x)) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) Types: sum :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ 0' :: 0':s:cons_sum:cons_+ s :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ +' :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ encArg :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ cons_sum :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ cons_+ :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ encode_sum :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ encode_0 :: 0':s:cons_sum:cons_+ encode_s :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ encode_+ :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ hole_0':s:cons_sum:cons_+1_3 :: 0':s:cons_sum:cons_+ gen_0':s:cons_sum:cons_+2_3 :: Nat -> 0':s:cons_sum:cons_+ ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: sum, +', encArg They will be analysed ascendingly in the following order: +' < sum sum < encArg +' < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x), s(x)) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) Types: sum :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ 0' :: 0':s:cons_sum:cons_+ s :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ +' :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ encArg :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ cons_sum :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ cons_+ :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ encode_sum :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ encode_0 :: 0':s:cons_sum:cons_+ encode_s :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ encode_+ :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ hole_0':s:cons_sum:cons_+1_3 :: 0':s:cons_sum:cons_+ gen_0':s:cons_sum:cons_+2_3 :: Nat -> 0':s:cons_sum:cons_+ Generator Equations: gen_0':s:cons_sum:cons_+2_3(0) <=> 0' gen_0':s:cons_sum:cons_+2_3(+(x, 1)) <=> s(gen_0':s:cons_sum:cons_+2_3(x)) The following defined symbols remain to be analysed: +', sum, encArg They will be analysed ascendingly in the following order: +' < sum sum < encArg +' < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: +'(gen_0':s:cons_sum:cons_+2_3(a), gen_0':s:cons_sum:cons_+2_3(n4_3)) -> gen_0':s:cons_sum:cons_+2_3(+(n4_3, a)), rt in Omega(1 + n4_3) Induction Base: +'(gen_0':s:cons_sum:cons_+2_3(a), gen_0':s:cons_sum:cons_+2_3(0)) ->_R^Omega(1) gen_0':s:cons_sum:cons_+2_3(a) Induction Step: +'(gen_0':s:cons_sum:cons_+2_3(a), gen_0':s:cons_sum:cons_+2_3(+(n4_3, 1))) ->_R^Omega(1) s(+'(gen_0':s:cons_sum:cons_+2_3(a), gen_0':s:cons_sum:cons_+2_3(n4_3))) ->_IH s(gen_0':s:cons_sum:cons_+2_3(+(a, c5_3))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x), s(x)) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) Types: sum :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ 0' :: 0':s:cons_sum:cons_+ s :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ +' :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ encArg :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ cons_sum :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ cons_+ :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ encode_sum :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ encode_0 :: 0':s:cons_sum:cons_+ encode_s :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ encode_+ :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ hole_0':s:cons_sum:cons_+1_3 :: 0':s:cons_sum:cons_+ gen_0':s:cons_sum:cons_+2_3 :: Nat -> 0':s:cons_sum:cons_+ Generator Equations: gen_0':s:cons_sum:cons_+2_3(0) <=> 0' gen_0':s:cons_sum:cons_+2_3(+(x, 1)) <=> s(gen_0':s:cons_sum:cons_+2_3(x)) The following defined symbols remain to be analysed: +', sum, encArg They will be analysed ascendingly in the following order: +' < sum sum < encArg +' < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Innermost TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x), s(x)) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) Types: sum :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ 0' :: 0':s:cons_sum:cons_+ s :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ +' :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ encArg :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ cons_sum :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ cons_+ :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ encode_sum :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ encode_0 :: 0':s:cons_sum:cons_+ encode_s :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ encode_+ :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ hole_0':s:cons_sum:cons_+1_3 :: 0':s:cons_sum:cons_+ gen_0':s:cons_sum:cons_+2_3 :: Nat -> 0':s:cons_sum:cons_+ Lemmas: +'(gen_0':s:cons_sum:cons_+2_3(a), gen_0':s:cons_sum:cons_+2_3(n4_3)) -> gen_0':s:cons_sum:cons_+2_3(+(n4_3, a)), rt in Omega(1 + n4_3) Generator Equations: gen_0':s:cons_sum:cons_+2_3(0) <=> 0' gen_0':s:cons_sum:cons_+2_3(+(x, 1)) <=> s(gen_0':s:cons_sum:cons_+2_3(x)) The following defined symbols remain to be analysed: sum, encArg They will be analysed ascendingly in the following order: sum < encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sum(gen_0':s:cons_sum:cons_+2_3(+(1, n643_3))) -> *3_3, rt in Omega(n643_3) Induction Base: sum(gen_0':s:cons_sum:cons_+2_3(+(1, 0))) Induction Step: sum(gen_0':s:cons_sum:cons_+2_3(+(1, +(n643_3, 1)))) ->_R^Omega(1) +'(sum(gen_0':s:cons_sum:cons_+2_3(+(1, n643_3))), s(gen_0':s:cons_sum:cons_+2_3(+(1, n643_3)))) ->_IH +'(*3_3, s(gen_0':s:cons_sum:cons_+2_3(+(1, n643_3)))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Obligation: Innermost TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x), s(x)) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) Types: sum :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ 0' :: 0':s:cons_sum:cons_+ s :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ +' :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ encArg :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ cons_sum :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ cons_+ :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ encode_sum :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ encode_0 :: 0':s:cons_sum:cons_+ encode_s :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ encode_+ :: 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ -> 0':s:cons_sum:cons_+ hole_0':s:cons_sum:cons_+1_3 :: 0':s:cons_sum:cons_+ gen_0':s:cons_sum:cons_+2_3 :: Nat -> 0':s:cons_sum:cons_+ Lemmas: +'(gen_0':s:cons_sum:cons_+2_3(a), gen_0':s:cons_sum:cons_+2_3(n4_3)) -> gen_0':s:cons_sum:cons_+2_3(+(n4_3, a)), rt in Omega(1 + n4_3) sum(gen_0':s:cons_sum:cons_+2_3(+(1, n643_3))) -> *3_3, rt in Omega(n643_3) Generator Equations: gen_0':s:cons_sum:cons_+2_3(0) <=> 0' gen_0':s:cons_sum:cons_+2_3(+(x, 1)) <=> s(gen_0':s:cons_sum:cons_+2_3(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_0':s:cons_sum:cons_+2_3(n2099_3)) -> gen_0':s:cons_sum:cons_+2_3(n2099_3), rt in Omega(0) Induction Base: encArg(gen_0':s:cons_sum:cons_+2_3(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_0':s:cons_sum:cons_+2_3(+(n2099_3, 1))) ->_R^Omega(0) s(encArg(gen_0':s:cons_sum:cons_+2_3(n2099_3))) ->_IH s(gen_0':s:cons_sum:cons_+2_3(c2100_3)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (20) BOUNDS(1, INF)