/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 60 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (14) CdtProblem (15) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 56 ms] (18) CdtProblem (19) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (20) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a(a(a(b(b(x1))))) -> b(b(a(b(b(a(a(a(x1)))))))) b(b(a(x1))) -> x1 a(x1) -> b(b(b(x1))) a(x1) -> b(x1) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a(a(a(b(b(x1))))) -> b(b(a(b(b(a(a(a(x1)))))))) b(b(a(x1))) -> x1 a(x1) -> b(b(b(x1))) a(x1) -> b(x1) The (relative) TRS S consists of the following rules: encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a(a(a(b(b(x1))))) -> b(b(a(b(b(a(a(a(x1)))))))) b(b(a(x1))) -> x1 a(x1) -> b(b(b(x1))) a(x1) -> b(x1) The (relative) TRS S consists of the following rules: encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) a(a(a(b(b(z0))))) -> b(b(a(b(b(a(a(a(z0)))))))) a(z0) -> b(b(b(z0))) a(z0) -> b(z0) b(b(a(z0))) -> z0 Tuples: ENCARG(cons_a(z0)) -> c(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c1(B(encArg(z0)), ENCARG(z0)) ENCODE_A(z0) -> c2(A(encArg(z0)), ENCARG(z0)) ENCODE_B(z0) -> c3(B(encArg(z0)), ENCARG(z0)) A(a(a(b(b(z0))))) -> c4(B(b(a(b(b(a(a(a(z0)))))))), B(a(b(b(a(a(a(z0))))))), A(b(b(a(a(a(z0)))))), B(b(a(a(a(z0))))), B(a(a(a(z0)))), A(a(a(z0))), A(a(z0)), A(z0)) A(z0) -> c5(B(b(b(z0))), B(b(z0)), B(z0)) A(z0) -> c6(B(z0)) B(b(a(z0))) -> c7 S tuples: A(a(a(b(b(z0))))) -> c4(B(b(a(b(b(a(a(a(z0)))))))), B(a(b(b(a(a(a(z0))))))), A(b(b(a(a(a(z0)))))), B(b(a(a(a(z0))))), B(a(a(a(z0)))), A(a(a(z0))), A(a(z0)), A(z0)) A(z0) -> c5(B(b(b(z0))), B(b(z0)), B(z0)) A(z0) -> c6(B(z0)) B(b(a(z0))) -> c7 K tuples:none Defined Rule Symbols: a_1, b_1, encArg_1, encode_a_1, encode_b_1 Defined Pair Symbols: ENCARG_1, ENCODE_A_1, ENCODE_B_1, A_1, B_1 Compound Symbols: c_2, c1_2, c2_2, c3_2, c4_8, c5_3, c6_1, c7 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: A(a(a(b(b(z0))))) -> c4(B(b(a(b(b(a(a(a(z0)))))))), B(a(b(b(a(a(a(z0))))))), A(b(b(a(a(a(z0)))))), B(b(a(a(a(z0))))), B(a(a(a(z0)))), A(a(a(z0))), A(a(z0)), A(z0)) Removed 1 trailing nodes: B(b(a(z0))) -> c7 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) a(a(a(b(b(z0))))) -> b(b(a(b(b(a(a(a(z0)))))))) a(z0) -> b(b(b(z0))) a(z0) -> b(z0) b(b(a(z0))) -> z0 Tuples: ENCARG(cons_a(z0)) -> c(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c1(B(encArg(z0)), ENCARG(z0)) ENCODE_A(z0) -> c2(A(encArg(z0)), ENCARG(z0)) ENCODE_B(z0) -> c3(B(encArg(z0)), ENCARG(z0)) A(z0) -> c5(B(b(b(z0))), B(b(z0)), B(z0)) A(z0) -> c6(B(z0)) S tuples: A(z0) -> c5(B(b(b(z0))), B(b(z0)), B(z0)) A(z0) -> c6(B(z0)) K tuples:none Defined Rule Symbols: a_1, b_1, encArg_1, encode_a_1, encode_b_1 Defined Pair Symbols: ENCARG_1, ENCODE_A_1, ENCODE_B_1, A_1 Compound Symbols: c_2, c1_2, c2_2, c3_2, c5_3, c6_1 ---------------------------------------- (9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 6 trailing tuple parts ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) a(a(a(b(b(z0))))) -> b(b(a(b(b(a(a(a(z0)))))))) a(z0) -> b(b(b(z0))) a(z0) -> b(z0) b(b(a(z0))) -> z0 Tuples: ENCARG(cons_a(z0)) -> c(A(encArg(z0)), ENCARG(z0)) ENCODE_A(z0) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c1(ENCARG(z0)) ENCODE_B(z0) -> c3(ENCARG(z0)) A(z0) -> c5 A(z0) -> c6 S tuples: A(z0) -> c5 A(z0) -> c6 K tuples:none Defined Rule Symbols: a_1, b_1, encArg_1, encode_a_1, encode_b_1 Defined Pair Symbols: ENCARG_1, ENCODE_A_1, ENCODE_B_1, A_1 Compound Symbols: c_2, c2_2, c1_1, c3_1, c5, c6 ---------------------------------------- (11) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) a(a(a(b(b(z0))))) -> b(b(a(b(b(a(a(a(z0)))))))) a(z0) -> b(b(b(z0))) a(z0) -> b(z0) b(b(a(z0))) -> z0 Tuples: ENCARG(cons_a(z0)) -> c(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c1(ENCARG(z0)) ENCODE_B(z0) -> c3(ENCARG(z0)) A(z0) -> c5 A(z0) -> c6 ENCODE_A(z0) -> c4(A(encArg(z0))) ENCODE_A(z0) -> c4(ENCARG(z0)) S tuples: A(z0) -> c5 A(z0) -> c6 K tuples:none Defined Rule Symbols: a_1, b_1, encArg_1, encode_a_1, encode_b_1 Defined Pair Symbols: ENCARG_1, ENCODE_B_1, A_1, ENCODE_A_1 Compound Symbols: c_2, c1_1, c3_1, c5, c6, c4_1 ---------------------------------------- (13) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_B(z0) -> c3(ENCARG(z0)) ENCODE_A(z0) -> c4(ENCARG(z0)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) a(a(a(b(b(z0))))) -> b(b(a(b(b(a(a(a(z0)))))))) a(z0) -> b(b(b(z0))) a(z0) -> b(z0) b(b(a(z0))) -> z0 Tuples: ENCARG(cons_a(z0)) -> c(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c1(ENCARG(z0)) A(z0) -> c5 A(z0) -> c6 ENCODE_A(z0) -> c4(A(encArg(z0))) S tuples: A(z0) -> c5 A(z0) -> c6 K tuples:none Defined Rule Symbols: a_1, b_1, encArg_1, encode_a_1, encode_b_1 Defined Pair Symbols: ENCARG_1, A_1, ENCODE_A_1 Compound Symbols: c_2, c1_1, c5, c6, c4_1 ---------------------------------------- (15) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) a(a(a(b(b(z0))))) -> b(b(a(b(b(a(a(a(z0)))))))) b(b(a(z0))) -> z0 ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) a(z0) -> b(b(b(z0))) a(z0) -> b(z0) Tuples: ENCARG(cons_a(z0)) -> c(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c1(ENCARG(z0)) A(z0) -> c5 A(z0) -> c6 ENCODE_A(z0) -> c4(A(encArg(z0))) S tuples: A(z0) -> c5 A(z0) -> c6 K tuples:none Defined Rule Symbols: encArg_1, a_1 Defined Pair Symbols: ENCARG_1, A_1, ENCODE_A_1 Compound Symbols: c_2, c1_1, c5, c6, c4_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. A(z0) -> c5 A(z0) -> c6 We considered the (Usable) Rules:none And the Tuples: ENCARG(cons_a(z0)) -> c(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c1(ENCARG(z0)) A(z0) -> c5 A(z0) -> c6 ENCODE_A(z0) -> c4(A(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A(x_1)) = [3] POL(ENCARG(x_1)) = [3]x_1 POL(ENCODE_A(x_1)) = [3] POL(a(x_1)) = 0 POL(b(x_1)) = 0 POL(c(x_1, x_2)) = x_1 + x_2 POL(c1(x_1)) = x_1 POL(c4(x_1)) = x_1 POL(c5) = 0 POL(c6) = 0 POL(cons_a(x_1)) = [3] + x_1 POL(cons_b(x_1)) = [3] + x_1 POL(encArg(x_1)) = [3] + x_1 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) a(z0) -> b(b(b(z0))) a(z0) -> b(z0) Tuples: ENCARG(cons_a(z0)) -> c(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c1(ENCARG(z0)) A(z0) -> c5 A(z0) -> c6 ENCODE_A(z0) -> c4(A(encArg(z0))) S tuples:none K tuples: A(z0) -> c5 A(z0) -> c6 Defined Rule Symbols: encArg_1, a_1 Defined Pair Symbols: ENCARG_1, A_1, ENCODE_A_1 Compound Symbols: c_2, c1_1, c5, c6, c4_1 ---------------------------------------- (19) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (20) BOUNDS(1, 1)