/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^3)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^3). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 181 ms] (4) CpxRelTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) CpxWeightedTrsRenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxWeightedTrs (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedTrs (11) CompletionProof [UPPER BOUND(ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxTypedWeightedCompleteTrs (15) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) InliningProof [UPPER BOUND(ID), 576 ms] (18) CpxRNTS (19) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxRNTS (21) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 379 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 110 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 4 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 16 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 129 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 43 ms] (40) CpxRNTS (41) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 1154 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 1127 ms] (46) CpxRNTS (47) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 397 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 277 ms] (52) CpxRNTS (53) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (54) CpxRNTS (55) IntTrsBoundProof [UPPER BOUND(ID), 385 ms] (56) CpxRNTS (57) IntTrsBoundProof [UPPER BOUND(ID), 6 ms] (58) CpxRNTS (59) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (60) CpxRNTS (61) IntTrsBoundProof [UPPER BOUND(ID), 68 ms] (62) CpxRNTS (63) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (64) CpxRNTS (65) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (66) CpxRNTS (67) IntTrsBoundProof [UPPER BOUND(ID), 148 ms] (68) CpxRNTS (69) IntTrsBoundProof [UPPER BOUND(ID), 1 ms] (70) CpxRNTS (71) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (72) CpxRNTS (73) IntTrsBoundProof [UPPER BOUND(ID), 156 ms] (74) CpxRNTS (75) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (76) CpxRNTS (77) FinalProof [FINISHED, 0 ms] (78) BOUNDS(1, n^3) (79) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (80) TRS for Loop Detection (81) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (82) BEST (83) proven lower bound (84) LowerBoundPropagationProof [FINISHED, 0 ms] (85) BOUNDS(n^1, INF) (86) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: -(x, 0) -> x -(s(x), s(y)) -> -(x, y) p(s(x)) -> x f(s(x), y) -> f(p(-(s(x), y)), p(-(y, s(x)))) f(x, s(y)) -> f(p(-(x, s(y))), p(-(s(y), x))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: -(x, 0) -> x -(s(x), s(y)) -> -(x, y) p(s(x)) -> x f(s(x), y) -> f(p(-(s(x), y)), p(-(y, s(x)))) f(x, s(y)) -> f(p(-(x, s(y))), p(-(s(y), x))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: -(x, 0) -> x -(s(x), s(y)) -> -(x, y) p(s(x)) -> x f(s(x), y) -> f(p(-(s(x), y)), p(-(y, s(x)))) f(x, s(y)) -> f(p(-(x, s(y))), p(-(s(y), x))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: -(x, 0) -> x [1] -(s(x), s(y)) -> -(x, y) [1] p(s(x)) -> x [1] f(s(x), y) -> f(p(-(s(x), y)), p(-(y, s(x)))) [1] f(x, s(y)) -> f(p(-(x, s(y))), p(-(s(y), x))) [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) [0] encArg(cons_p(x_1)) -> p(encArg(x_1)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_p(x_1) -> p(encArg(x_1)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) CpxWeightedTrsRenamingProof (BOTH BOUNDS(ID, ID)) Renamed defined symbols to avoid conflicts with arithmetic symbols: - => minus ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] p(s(x)) -> x [1] f(s(x), y) -> f(p(minus(s(x), y)), p(minus(y, s(x)))) [1] f(x, s(y)) -> f(p(minus(x, s(y))), p(minus(s(y), x))) [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_-(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) [0] encArg(cons_p(x_1)) -> p(encArg(x_1)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encode_-(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_p(x_1) -> p(encArg(x_1)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] p(s(x)) -> x [1] f(s(x), y) -> f(p(minus(s(x), y)), p(minus(y, s(x)))) [1] f(x, s(y)) -> f(p(minus(x, s(y))), p(minus(s(y), x))) [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_-(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) [0] encArg(cons_p(x_1)) -> p(encArg(x_1)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encode_-(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_p(x_1) -> p(encArg(x_1)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] The TRS has the following type information: minus :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f 0 :: 0:s:cons_-:cons_p:cons_f s :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f p :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f f :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f encArg :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f cons_- :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f cons_p :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f cons_f :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f encode_- :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f encode_0 :: 0:s:cons_-:cons_p:cons_f encode_s :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f encode_p :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f encode_f :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f Rewrite Strategy: INNERMOST ---------------------------------------- (11) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: p_1 minus_2 f_2 encArg_1 encode_-_2 encode_0 encode_s_1 encode_p_1 encode_f_2 Due to the following rules being added: encArg(v0) -> 0 [0] encode_-(v0, v1) -> 0 [0] encode_0 -> 0 [0] encode_s(v0) -> 0 [0] encode_p(v0) -> 0 [0] encode_f(v0, v1) -> 0 [0] p(v0) -> 0 [0] minus(v0, v1) -> 0 [0] f(v0, v1) -> 0 [0] And the following fresh constants: none ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] p(s(x)) -> x [1] f(s(x), y) -> f(p(minus(s(x), y)), p(minus(y, s(x)))) [1] f(x, s(y)) -> f(p(minus(x, s(y))), p(minus(s(y), x))) [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_-(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) [0] encArg(cons_p(x_1)) -> p(encArg(x_1)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encode_-(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_p(x_1) -> p(encArg(x_1)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encArg(v0) -> 0 [0] encode_-(v0, v1) -> 0 [0] encode_0 -> 0 [0] encode_s(v0) -> 0 [0] encode_p(v0) -> 0 [0] encode_f(v0, v1) -> 0 [0] p(v0) -> 0 [0] minus(v0, v1) -> 0 [0] f(v0, v1) -> 0 [0] The TRS has the following type information: minus :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f 0 :: 0:s:cons_-:cons_p:cons_f s :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f p :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f f :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f encArg :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f cons_- :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f cons_p :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f cons_f :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f encode_- :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f encode_0 :: 0:s:cons_-:cons_p:cons_f encode_s :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f encode_p :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f encode_f :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f Rewrite Strategy: INNERMOST ---------------------------------------- (13) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] p(s(x)) -> x [1] f(s(x), 0) -> f(p(s(x)), p(0)) [2] f(s(x), s(y')) -> f(p(minus(x, y')), p(minus(y', x))) [3] f(s(x), s(y')) -> f(p(minus(x, y')), p(0)) [2] f(s(x), s(x')) -> f(p(0), p(minus(x', x))) [2] f(s(x), y) -> f(p(0), p(0)) [1] f(s(x''), s(y)) -> f(p(minus(x'', y)), p(minus(y, x''))) [3] f(s(x''), s(y)) -> f(p(minus(x'', y)), p(0)) [2] f(0, s(y)) -> f(p(0), p(s(y))) [2] f(s(y''), s(y)) -> f(p(0), p(minus(y, y''))) [2] f(x, s(y)) -> f(p(0), p(0)) [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_-(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) [0] encArg(cons_p(0)) -> p(0) [0] encArg(cons_p(s(x_127))) -> p(s(encArg(x_127))) [0] encArg(cons_p(cons_-(x_128, x_213))) -> p(minus(encArg(x_128), encArg(x_213))) [0] encArg(cons_p(cons_p(x_129))) -> p(p(encArg(x_129))) [0] encArg(cons_p(cons_f(x_130, x_214))) -> p(f(encArg(x_130), encArg(x_214))) [0] encArg(cons_p(x_1)) -> p(0) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encode_-(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_p(0) -> p(0) [0] encode_p(s(x_187)) -> p(s(encArg(x_187))) [0] encode_p(cons_-(x_188, x_243)) -> p(minus(encArg(x_188), encArg(x_243))) [0] encode_p(cons_p(x_189)) -> p(p(encArg(x_189))) [0] encode_p(cons_f(x_190, x_244)) -> p(f(encArg(x_190), encArg(x_244))) [0] encode_p(x_1) -> p(0) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encArg(v0) -> 0 [0] encode_-(v0, v1) -> 0 [0] encode_0 -> 0 [0] encode_s(v0) -> 0 [0] encode_p(v0) -> 0 [0] encode_f(v0, v1) -> 0 [0] p(v0) -> 0 [0] minus(v0, v1) -> 0 [0] f(v0, v1) -> 0 [0] The TRS has the following type information: minus :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f 0 :: 0:s:cons_-:cons_p:cons_f s :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f p :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f f :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f encArg :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f cons_- :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f cons_p :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f cons_f :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f encode_- :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f encode_0 :: 0:s:cons_-:cons_p:cons_f encode_s :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f encode_p :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f encode_f :: 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f -> 0:s:cons_-:cons_p:cons_f Rewrite Strategy: INNERMOST ---------------------------------------- (15) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> p(p(encArg(x_129))) :|: z = 1 + (1 + x_129), x_129 >= 0 encArg(z) -{ 0 }-> p(minus(encArg(x_128), encArg(x_213))) :|: x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 0 }-> p(f(encArg(x_130), encArg(x_214))) :|: x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> p(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> p(0) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> p(1 + encArg(x_127)) :|: z = 1 + (1 + x_127), x_127 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_-(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_p(z) -{ 0 }-> p(p(encArg(x_189))) :|: z = 1 + x_189, x_189 >= 0 encode_p(z) -{ 0 }-> p(minus(encArg(x_188), encArg(x_243))) :|: z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ 0 }-> p(f(encArg(x_190), encArg(x_244))) :|: x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> p(0) :|: z = 0 encode_p(z) -{ 0 }-> p(0) :|: x_1 >= 0, z = x_1 encode_p(z) -{ 0 }-> p(1 + encArg(x_187)) :|: x_187 >= 0, z = 1 + x_187 encode_p(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_s(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_s(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 f(z, z') -{ 3 }-> f(p(minus(x, y')), p(minus(y', x))) :|: x >= 0, y' >= 0, z = 1 + x, z' = 1 + y' f(z, z') -{ 2 }-> f(p(minus(x, y')), p(0)) :|: x >= 0, y' >= 0, z = 1 + x, z' = 1 + y' f(z, z') -{ 3 }-> f(p(minus(x'', y)), p(minus(y, x''))) :|: z = 1 + x'', z' = 1 + y, y >= 0, x'' >= 0 f(z, z') -{ 2 }-> f(p(minus(x'', y)), p(0)) :|: z = 1 + x'', z' = 1 + y, y >= 0, x'' >= 0 f(z, z') -{ 2 }-> f(p(0), p(minus(x', x))) :|: z' = 1 + x', x >= 0, x' >= 0, z = 1 + x f(z, z') -{ 2 }-> f(p(0), p(minus(y, y''))) :|: z' = 1 + y, z = 1 + y'', y >= 0, y'' >= 0 f(z, z') -{ 1 }-> f(p(0), p(0)) :|: x >= 0, y >= 0, z = 1 + x, z' = y f(z, z') -{ 1 }-> f(p(0), p(0)) :|: z' = 1 + y, x >= 0, y >= 0, z = x f(z, z') -{ 2 }-> f(p(0), p(1 + y)) :|: z' = 1 + y, y >= 0, z = 0 f(z, z') -{ 2 }-> f(p(1 + x), p(0)) :|: x >= 0, z = 1 + x, z' = 0 f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 minus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 minus(z, z') -{ 1 }-> minus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x minus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 ---------------------------------------- (17) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> p(p(encArg(x_129))) :|: z = 1 + (1 + x_129), x_129 >= 0 encArg(z) -{ 0 }-> p(minus(encArg(x_128), encArg(x_213))) :|: x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 0 }-> p(f(encArg(x_130), encArg(x_214))) :|: x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> p(1 + encArg(x_127)) :|: z = 1 + (1 + x_127), x_127 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + x_1, x_1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_-(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_p(z) -{ 0 }-> p(p(encArg(x_189))) :|: z = 1 + x_189, x_189 >= 0 encode_p(z) -{ 0 }-> p(minus(encArg(x_188), encArg(x_243))) :|: z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ 0 }-> p(f(encArg(x_190), encArg(x_244))) :|: x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> p(1 + encArg(x_187)) :|: x_187 >= 0, z = 1 + x_187 encode_p(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: x_1 >= 0, z = x_1, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_s(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 f(z, z') -{ 3 }-> f(x', 0) :|: x >= 0, z = 1 + x, z' = 0, x' >= 0, 1 + x = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(p(minus(x, y')), p(minus(y', x))) :|: x >= 0, y' >= 0, z = 1 + x, z' = 1 + y' f(z, z') -{ 2 }-> f(p(minus(x, y')), 0) :|: x >= 0, y' >= 0, z = 1 + x, z' = 1 + y', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(p(minus(x'', y)), p(minus(y, x''))) :|: z = 1 + x'', z' = 1 + y, y >= 0, x'' >= 0 f(z, z') -{ 2 }-> f(p(minus(x'', y)), 0) :|: z = 1 + x'', z' = 1 + y, y >= 0, x'' >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(0, x) :|: z' = 1 + y, y >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + y = 1 + x f(z, z') -{ 2 }-> f(0, p(minus(x', x))) :|: z' = 1 + x', x >= 0, x' >= 0, z = 1 + x, v0 >= 0, 0 = v0 f(z, z') -{ 2 }-> f(0, p(minus(y, y''))) :|: z' = 1 + y, z = 1 + y'', y >= 0, y'' >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 2 }-> f(0, 0) :|: x >= 0, z = 1 + x, z' = 0, v0 >= 0, 1 + x = v0, v0' >= 0, 0 = v0' f(z, z') -{ 1 }-> f(0, 0) :|: x >= 0, y >= 0, z = 1 + x, z' = y, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 2 }-> f(0, 0) :|: z' = 1 + y, y >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + y = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z' = 1 + y, x >= 0, y >= 0, z = x, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 minus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 minus(z, z') -{ 1 }-> minus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x minus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 ---------------------------------------- (19) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> p(p(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> p(minus(encArg(x_128), encArg(x_213))) :|: x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 0 }-> p(f(encArg(x_130), encArg(x_214))) :|: x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> p(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ 0 }-> p(p(encArg(z - 1))) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> p(minus(encArg(x_188), encArg(x_243))) :|: z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ 0 }-> p(f(encArg(x_190), encArg(x_244))) :|: x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> p(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 3 }-> f(x', 0) :|: z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(p(minus(z - 1, z' - 1)), p(minus(z' - 1, z - 1))) :|: z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 2 }-> f(p(minus(z - 1, z' - 1)), 0) :|: z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(0, x) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 2 }-> f(0, p(minus(z' - 1, z - 1))) :|: z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 2 }-> f(0, 0) :|: z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 2 }-> f(0, 0) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 ---------------------------------------- (21) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { minus } { encode_0 } { p } { f } { encArg } { encode_p } { encode_f } { encode_- } { encode_s } ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> p(p(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> p(minus(encArg(x_128), encArg(x_213))) :|: x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 0 }-> p(f(encArg(x_130), encArg(x_214))) :|: x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> p(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ 0 }-> p(p(encArg(z - 1))) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> p(minus(encArg(x_188), encArg(x_243))) :|: z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ 0 }-> p(f(encArg(x_190), encArg(x_244))) :|: x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> p(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 3 }-> f(x', 0) :|: z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(p(minus(z - 1, z' - 1)), p(minus(z' - 1, z - 1))) :|: z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 2 }-> f(p(minus(z - 1, z' - 1)), 0) :|: z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(0, x) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 2 }-> f(0, p(minus(z' - 1, z - 1))) :|: z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 2 }-> f(0, 0) :|: z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 2 }-> f(0, 0) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {minus}, {encode_0}, {p}, {f}, {encArg}, {encode_p}, {encode_f}, {encode_-}, {encode_s} ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> p(p(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> p(minus(encArg(x_128), encArg(x_213))) :|: x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 0 }-> p(f(encArg(x_130), encArg(x_214))) :|: x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> p(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ 0 }-> p(p(encArg(z - 1))) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> p(minus(encArg(x_188), encArg(x_243))) :|: z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ 0 }-> p(f(encArg(x_190), encArg(x_244))) :|: x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> p(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 3 }-> f(x', 0) :|: z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(p(minus(z - 1, z' - 1)), p(minus(z' - 1, z - 1))) :|: z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 2 }-> f(p(minus(z - 1, z' - 1)), 0) :|: z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(0, x) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 2 }-> f(0, p(minus(z' - 1, z - 1))) :|: z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 2 }-> f(0, 0) :|: z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 2 }-> f(0, 0) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {minus}, {encode_0}, {p}, {f}, {encArg}, {encode_p}, {encode_f}, {encode_-}, {encode_s} ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> p(p(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> p(minus(encArg(x_128), encArg(x_213))) :|: x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 0 }-> p(f(encArg(x_130), encArg(x_214))) :|: x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> p(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ 0 }-> p(p(encArg(z - 1))) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> p(minus(encArg(x_188), encArg(x_243))) :|: z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ 0 }-> p(f(encArg(x_190), encArg(x_244))) :|: x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> p(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 3 }-> f(x', 0) :|: z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(p(minus(z - 1, z' - 1)), p(minus(z' - 1, z - 1))) :|: z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 2 }-> f(p(minus(z - 1, z' - 1)), 0) :|: z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(0, x) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 2 }-> f(0, p(minus(z' - 1, z - 1))) :|: z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 2 }-> f(0, 0) :|: z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 2 }-> f(0, 0) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {minus}, {encode_0}, {p}, {f}, {encArg}, {encode_p}, {encode_f}, {encode_-}, {encode_s} Previous analysis results are: minus: runtime: ?, size: O(n^1) [z] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> p(p(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> p(minus(encArg(x_128), encArg(x_213))) :|: x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 0 }-> p(f(encArg(x_130), encArg(x_214))) :|: x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> p(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ 0 }-> p(p(encArg(z - 1))) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> p(minus(encArg(x_188), encArg(x_243))) :|: z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ 0 }-> p(f(encArg(x_190), encArg(x_244))) :|: x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> p(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 3 }-> f(x', 0) :|: z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(p(minus(z - 1, z' - 1)), p(minus(z' - 1, z - 1))) :|: z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 2 }-> f(p(minus(z - 1, z' - 1)), 0) :|: z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(0, x) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 2 }-> f(0, p(minus(z' - 1, z - 1))) :|: z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 2 }-> f(0, 0) :|: z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 2 }-> f(0, 0) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {encode_0}, {p}, {f}, {encArg}, {encode_p}, {encode_f}, {encode_-}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> p(p(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> p(minus(encArg(x_128), encArg(x_213))) :|: x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 0 }-> p(f(encArg(x_130), encArg(x_214))) :|: x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> p(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ 0 }-> p(p(encArg(z - 1))) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> p(minus(encArg(x_188), encArg(x_243))) :|: z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ 0 }-> p(f(encArg(x_190), encArg(x_244))) :|: x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> p(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 3 }-> f(x', 0) :|: z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 3 + z + z' }-> f(p(s'), p(s'')) :|: s' >= 0, s' <= z - 1, s'' >= 0, s'' <= z' - 1, z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 2 + z' }-> f(p(s1), 0) :|: s1 >= 0, s1 <= z - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(0, x) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 2 + z }-> f(0, p(s2)) :|: s2 >= 0, s2 <= z' - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 2 }-> f(0, 0) :|: z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 2 }-> f(0, 0) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {encode_0}, {p}, {f}, {encArg}, {encode_p}, {encode_f}, {encode_-}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> p(p(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> p(minus(encArg(x_128), encArg(x_213))) :|: x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 0 }-> p(f(encArg(x_130), encArg(x_214))) :|: x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> p(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ 0 }-> p(p(encArg(z - 1))) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> p(minus(encArg(x_188), encArg(x_243))) :|: z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ 0 }-> p(f(encArg(x_190), encArg(x_244))) :|: x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> p(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 3 }-> f(x', 0) :|: z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 3 + z + z' }-> f(p(s'), p(s'')) :|: s' >= 0, s' <= z - 1, s'' >= 0, s'' <= z' - 1, z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 2 + z' }-> f(p(s1), 0) :|: s1 >= 0, s1 <= z - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(0, x) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 2 + z }-> f(0, p(s2)) :|: s2 >= 0, s2 <= z' - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 2 }-> f(0, 0) :|: z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 2 }-> f(0, 0) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {encode_0}, {p}, {f}, {encArg}, {encode_p}, {encode_f}, {encode_-}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] encode_0: runtime: ?, size: O(1) [0] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> p(p(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> p(minus(encArg(x_128), encArg(x_213))) :|: x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 0 }-> p(f(encArg(x_130), encArg(x_214))) :|: x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> p(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ 0 }-> p(p(encArg(z - 1))) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> p(minus(encArg(x_188), encArg(x_243))) :|: z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ 0 }-> p(f(encArg(x_190), encArg(x_244))) :|: x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> p(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 3 }-> f(x', 0) :|: z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 3 + z + z' }-> f(p(s'), p(s'')) :|: s' >= 0, s' <= z - 1, s'' >= 0, s'' <= z' - 1, z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 2 + z' }-> f(p(s1), 0) :|: s1 >= 0, s1 <= z - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(0, x) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 2 + z }-> f(0, p(s2)) :|: s2 >= 0, s2 <= z' - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 2 }-> f(0, 0) :|: z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 2 }-> f(0, 0) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {f}, {encArg}, {encode_p}, {encode_f}, {encode_-}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> p(p(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> p(minus(encArg(x_128), encArg(x_213))) :|: x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 0 }-> p(f(encArg(x_130), encArg(x_214))) :|: x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> p(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ 0 }-> p(p(encArg(z - 1))) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> p(minus(encArg(x_188), encArg(x_243))) :|: z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ 0 }-> p(f(encArg(x_190), encArg(x_244))) :|: x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> p(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 3 }-> f(x', 0) :|: z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 3 + z + z' }-> f(p(s'), p(s'')) :|: s' >= 0, s' <= z - 1, s'' >= 0, s'' <= z' - 1, z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 2 + z' }-> f(p(s1), 0) :|: s1 >= 0, s1 <= z - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(0, x) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 2 + z }-> f(0, p(s2)) :|: s2 >= 0, s2 <= z' - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 2 }-> f(0, 0) :|: z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 2 }-> f(0, 0) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {f}, {encArg}, {encode_p}, {encode_f}, {encode_-}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: p after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> p(p(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> p(minus(encArg(x_128), encArg(x_213))) :|: x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 0 }-> p(f(encArg(x_130), encArg(x_214))) :|: x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> p(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ 0 }-> p(p(encArg(z - 1))) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> p(minus(encArg(x_188), encArg(x_243))) :|: z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ 0 }-> p(f(encArg(x_190), encArg(x_244))) :|: x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> p(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 3 }-> f(x', 0) :|: z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 3 + z + z' }-> f(p(s'), p(s'')) :|: s' >= 0, s' <= z - 1, s'' >= 0, s'' <= z' - 1, z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 2 + z' }-> f(p(s1), 0) :|: s1 >= 0, s1 <= z - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(0, x) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 2 + z }-> f(0, p(s2)) :|: s2 >= 0, s2 <= z' - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 2 }-> f(0, 0) :|: z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 2 }-> f(0, 0) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {f}, {encArg}, {encode_p}, {encode_f}, {encode_-}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] p: runtime: ?, size: O(n^1) [z] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: p after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> p(p(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> p(minus(encArg(x_128), encArg(x_213))) :|: x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 0 }-> p(f(encArg(x_130), encArg(x_214))) :|: x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> p(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ 0 }-> p(p(encArg(z - 1))) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> p(minus(encArg(x_188), encArg(x_243))) :|: z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ 0 }-> p(f(encArg(x_190), encArg(x_244))) :|: x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> p(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 3 }-> f(x', 0) :|: z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 3 + z + z' }-> f(p(s'), p(s'')) :|: s' >= 0, s' <= z - 1, s'' >= 0, s'' <= z' - 1, z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 2 + z' }-> f(p(s1), 0) :|: s1 >= 0, s1 <= z - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(0, x) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 2 + z }-> f(0, p(s2)) :|: s2 >= 0, s2 <= z' - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 2 }-> f(0, 0) :|: z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 2 }-> f(0, 0) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_p}, {encode_f}, {encode_-}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (41) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> p(p(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> p(minus(encArg(x_128), encArg(x_213))) :|: x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 0 }-> p(f(encArg(x_130), encArg(x_214))) :|: x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> p(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ 0 }-> p(p(encArg(z - 1))) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> p(minus(encArg(x_188), encArg(x_243))) :|: z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ 0 }-> p(f(encArg(x_190), encArg(x_244))) :|: x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> p(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 5 + z + z' }-> f(s3, s4) :|: s3 >= 0, s3 <= s', s4 >= 0, s4 <= s'', s' >= 0, s' <= z - 1, s'' >= 0, s'' <= z' - 1, z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 3 + z' }-> f(s5, 0) :|: s5 >= 0, s5 <= s1, s1 >= 0, s1 <= z - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(x', 0) :|: z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 3 + z }-> f(0, s6) :|: s6 >= 0, s6 <= s2, s2 >= 0, s2 <= z' - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(0, x) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 2 }-> f(0, 0) :|: z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 2 }-> f(0, 0) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_p}, {encode_f}, {encode_-}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> p(p(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> p(minus(encArg(x_128), encArg(x_213))) :|: x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 0 }-> p(f(encArg(x_130), encArg(x_214))) :|: x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> p(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ 0 }-> p(p(encArg(z - 1))) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> p(minus(encArg(x_188), encArg(x_243))) :|: z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ 0 }-> p(f(encArg(x_190), encArg(x_244))) :|: x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> p(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 5 + z + z' }-> f(s3, s4) :|: s3 >= 0, s3 <= s', s4 >= 0, s4 <= s'', s' >= 0, s' <= z - 1, s'' >= 0, s'' <= z' - 1, z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 3 + z' }-> f(s5, 0) :|: s5 >= 0, s5 <= s1, s1 >= 0, s1 <= z - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(x', 0) :|: z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 3 + z }-> f(0, s6) :|: s6 >= 0, s6 <= s2, s2 >= 0, s2 <= z' - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(0, x) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 2 }-> f(0, 0) :|: z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 2 }-> f(0, 0) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_p}, {encode_f}, {encode_-}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] f: runtime: ?, size: O(1) [0] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 17 + 8*z + z*z' + z^2 + 8*z' + z'^2 ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> p(p(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> p(minus(encArg(x_128), encArg(x_213))) :|: x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 0 }-> p(f(encArg(x_130), encArg(x_214))) :|: x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> p(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ 0 }-> p(p(encArg(z - 1))) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> p(minus(encArg(x_188), encArg(x_243))) :|: z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ 0 }-> p(f(encArg(x_190), encArg(x_244))) :|: x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> p(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 5 + z + z' }-> f(s3, s4) :|: s3 >= 0, s3 <= s', s4 >= 0, s4 <= s'', s' >= 0, s' <= z - 1, s'' >= 0, s'' <= z' - 1, z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 3 + z' }-> f(s5, 0) :|: s5 >= 0, s5 <= s1, s1 >= 0, s1 <= z - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(x', 0) :|: z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 3 + z }-> f(0, s6) :|: s6 >= 0, s6 <= s2, s2 >= 0, s2 <= z' - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(0, x) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 2 }-> f(0, 0) :|: z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 2 }-> f(0, 0) :|: z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 1 }-> f(0, 0) :|: z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {encArg}, {encode_p}, {encode_f}, {encode_-}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] f: runtime: O(n^2) [17 + 8*z + z*z' + z^2 + 8*z' + z'^2], size: O(1) [0] ---------------------------------------- (47) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> p(p(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> p(minus(encArg(x_128), encArg(x_213))) :|: x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 0 }-> p(f(encArg(x_130), encArg(x_214))) :|: x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> p(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ 0 }-> p(p(encArg(z - 1))) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> p(minus(encArg(x_188), encArg(x_243))) :|: z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ 0 }-> p(f(encArg(x_190), encArg(x_244))) :|: x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> p(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 20 + 8*s5 + s5^2 + z' }-> s10 :|: s10 >= 0, s10 <= 0, s5 >= 0, s5 <= s1, s1 >= 0, s1 <= z - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 20 + 8*s6 + s6^2 + z }-> s11 :|: s11 >= 0, s11 <= 0, s6 >= 0, s6 <= s2, s2 >= 0, s2 <= z' - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 18 }-> s12 :|: s12 >= 0, s12 <= 0, z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x + x^2 }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 19 }-> s14 :|: s14 >= 0, s14 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 18 }-> s15 :|: s15 >= 0, s15 <= 0, z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x' + x'^2 }-> s7 :|: s7 >= 0, s7 <= 0, z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 19 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 22 + 8*s3 + s3*s4 + s3^2 + 8*s4 + s4^2 + z + z' }-> s9 :|: s9 >= 0, s9 <= 0, s3 >= 0, s3 <= s', s4 >= 0, s4 <= s'', s' >= 0, s' <= z - 1, s'' >= 0, s'' <= z' - 1, z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {encArg}, {encode_p}, {encode_f}, {encode_-}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] f: runtime: O(n^2) [17 + 8*z + z*z' + z^2 + 8*z' + z'^2], size: O(1) [0] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> p(p(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> p(minus(encArg(x_128), encArg(x_213))) :|: x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 0 }-> p(f(encArg(x_130), encArg(x_214))) :|: x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> p(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ 0 }-> p(p(encArg(z - 1))) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> p(minus(encArg(x_188), encArg(x_243))) :|: z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ 0 }-> p(f(encArg(x_190), encArg(x_244))) :|: x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> p(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 20 + 8*s5 + s5^2 + z' }-> s10 :|: s10 >= 0, s10 <= 0, s5 >= 0, s5 <= s1, s1 >= 0, s1 <= z - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 20 + 8*s6 + s6^2 + z }-> s11 :|: s11 >= 0, s11 <= 0, s6 >= 0, s6 <= s2, s2 >= 0, s2 <= z' - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 18 }-> s12 :|: s12 >= 0, s12 <= 0, z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x + x^2 }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 19 }-> s14 :|: s14 >= 0, s14 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 18 }-> s15 :|: s15 >= 0, s15 <= 0, z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x' + x'^2 }-> s7 :|: s7 >= 0, s7 <= 0, z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 19 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 22 + 8*s3 + s3*s4 + s3^2 + 8*s4 + s4^2 + z + z' }-> s9 :|: s9 >= 0, s9 <= 0, s3 >= 0, s3 <= s', s4 >= 0, s4 <= s'', s' >= 0, s' <= z - 1, s'' >= 0, s'' <= z' - 1, z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {encArg}, {encode_p}, {encode_f}, {encode_-}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] f: runtime: O(n^2) [17 + 8*z + z*z' + z^2 + 8*z' + z'^2], size: O(1) [0] encArg: runtime: ?, size: O(n^1) [z] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 41 + 116*z + 74*z^2 + 12*z^3 ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> p(p(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> p(minus(encArg(x_128), encArg(x_213))) :|: x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 0 }-> p(f(encArg(x_130), encArg(x_214))) :|: x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> p(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ 0 }-> p(p(encArg(z - 1))) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> p(minus(encArg(x_188), encArg(x_243))) :|: z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ 0 }-> p(f(encArg(x_190), encArg(x_244))) :|: x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> p(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 20 + 8*s5 + s5^2 + z' }-> s10 :|: s10 >= 0, s10 <= 0, s5 >= 0, s5 <= s1, s1 >= 0, s1 <= z - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 20 + 8*s6 + s6^2 + z }-> s11 :|: s11 >= 0, s11 <= 0, s6 >= 0, s6 <= s2, s2 >= 0, s2 <= z' - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 18 }-> s12 :|: s12 >= 0, s12 <= 0, z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x + x^2 }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 19 }-> s14 :|: s14 >= 0, s14 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 18 }-> s15 :|: s15 >= 0, s15 <= 0, z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x' + x'^2 }-> s7 :|: s7 >= 0, s7 <= 0, z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 19 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 22 + 8*s3 + s3*s4 + s3^2 + 8*s4 + s4^2 + z + z' }-> s9 :|: s9 >= 0, s9 <= 0, s3 >= 0, s3 <= s', s4 >= 0, s4 <= s'', s' >= 0, s' <= z - 1, s'' >= 0, s'' <= z' - 1, z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {encode_p}, {encode_f}, {encode_-}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] f: runtime: O(n^2) [17 + 8*z + z*z' + z^2 + 8*z' + z'^2], size: O(1) [0] encArg: runtime: O(n^3) [41 + 116*z + 74*z^2 + 12*z^3], size: O(n^1) [z] ---------------------------------------- (53) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 83 + s18 + 116*x_1 + 74*x_1^2 + 12*x_1^3 + 116*x_2 + 74*x_2^2 + 12*x_2^3 }-> s19 :|: s17 >= 0, s17 <= x_1, s18 >= 0, s18 <= x_2, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 99 + 8*s20 + s20*s21 + s20^2 + 8*s21 + s21^2 + 116*x_1 + 74*x_1^2 + 12*x_1^3 + 116*x_2 + 74*x_2^2 + 12*x_2^3 }-> s22 :|: s20 >= 0, s20 <= x_1, s21 >= 0, s21 <= x_2, s22 >= 0, s22 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 10 + -36*z + 2*z^2 + 12*z^3 }-> s31 :|: s30 >= 0, s30 <= z - 2, s31 >= 0, s31 <= 1 + s30, z - 2 >= 0 encArg(z) -{ 84 + s33 + 116*x_128 + 74*x_128^2 + 12*x_128^3 + 116*x_213 + 74*x_213^2 + 12*x_213^3 }-> s35 :|: s32 >= 0, s32 <= x_128, s33 >= 0, s33 <= x_213, s34 >= 0, s34 <= s32, s35 >= 0, s35 <= s34, x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 11 + -36*z + 2*z^2 + 12*z^3 }-> s38 :|: s36 >= 0, s36 <= z - 2, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37, z - 2 >= 0 encArg(z) -{ 100 + 8*s39 + s39*s40 + s39^2 + 8*s40 + s40^2 + 116*x_130 + 74*x_130^2 + 12*x_130^3 + 116*x_214 + 74*x_214^2 + 12*x_214^3 }-> s42 :|: s39 >= 0, s39 <= x_130, s40 >= 0, s40 <= x_214, s41 >= 0, s41 <= 0, s42 >= 0, s42 <= s41, x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ -13 + 4*z + 38*z^2 + 12*z^3 }-> 1 + s16 :|: s16 >= 0, s16 <= z - 1, z - 1 >= 0 encode_-(z, z') -{ 83 + s24 + 116*z + 74*z^2 + 12*z^3 + 116*z' + 74*z'^2 + 12*z'^3 }-> s25 :|: s23 >= 0, s23 <= z, s24 >= 0, s24 <= z', s25 >= 0, s25 <= s23, z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 99 + 8*s27 + s27*s28 + s27^2 + 8*s28 + s28^2 + 116*z + 74*z^2 + 12*z^3 + 116*z' + 74*z'^2 + 12*z'^3 }-> s29 :|: s27 >= 0, s27 <= z, s28 >= 0, s28 <= z', s29 >= 0, s29 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ -12 + 4*z + 38*z^2 + 12*z^3 }-> s44 :|: s43 >= 0, s43 <= z - 1, s44 >= 0, s44 <= 1 + s43, z - 1 >= 0 encode_p(z) -{ 84 + s46 + 116*x_188 + 74*x_188^2 + 12*x_188^3 + 116*x_243 + 74*x_243^2 + 12*x_243^3 }-> s48 :|: s45 >= 0, s45 <= x_188, s46 >= 0, s46 <= x_243, s47 >= 0, s47 <= s45, s48 >= 0, s48 <= s47, z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ -11 + 4*z + 38*z^2 + 12*z^3 }-> s51 :|: s49 >= 0, s49 <= z - 1, s50 >= 0, s50 <= s49, s51 >= 0, s51 <= s50, z - 1 >= 0 encode_p(z) -{ 100 + 8*s52 + s52*s53 + s52^2 + 8*s53 + s53^2 + 116*x_190 + 74*x_190^2 + 12*x_190^3 + 116*x_244 + 74*x_244^2 + 12*x_244^3 }-> s55 :|: s52 >= 0, s52 <= x_190, s53 >= 0, s53 <= x_244, s54 >= 0, s54 <= 0, s55 >= 0, s55 <= s54, x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 41 + 116*z + 74*z^2 + 12*z^3 }-> 1 + s26 :|: s26 >= 0, s26 <= z, z >= 0 f(z, z') -{ 20 + 8*s5 + s5^2 + z' }-> s10 :|: s10 >= 0, s10 <= 0, s5 >= 0, s5 <= s1, s1 >= 0, s1 <= z - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 20 + 8*s6 + s6^2 + z }-> s11 :|: s11 >= 0, s11 <= 0, s6 >= 0, s6 <= s2, s2 >= 0, s2 <= z' - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 18 }-> s12 :|: s12 >= 0, s12 <= 0, z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x + x^2 }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 19 }-> s14 :|: s14 >= 0, s14 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 18 }-> s15 :|: s15 >= 0, s15 <= 0, z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x' + x'^2 }-> s7 :|: s7 >= 0, s7 <= 0, z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 19 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 22 + 8*s3 + s3*s4 + s3^2 + 8*s4 + s4^2 + z + z' }-> s9 :|: s9 >= 0, s9 <= 0, s3 >= 0, s3 <= s', s4 >= 0, s4 <= s'', s' >= 0, s' <= z - 1, s'' >= 0, s'' <= z' - 1, z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {encode_p}, {encode_f}, {encode_-}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] f: runtime: O(n^2) [17 + 8*z + z*z' + z^2 + 8*z' + z'^2], size: O(1) [0] encArg: runtime: O(n^3) [41 + 116*z + 74*z^2 + 12*z^3], size: O(n^1) [z] ---------------------------------------- (55) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_p after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 83 + s18 + 116*x_1 + 74*x_1^2 + 12*x_1^3 + 116*x_2 + 74*x_2^2 + 12*x_2^3 }-> s19 :|: s17 >= 0, s17 <= x_1, s18 >= 0, s18 <= x_2, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 99 + 8*s20 + s20*s21 + s20^2 + 8*s21 + s21^2 + 116*x_1 + 74*x_1^2 + 12*x_1^3 + 116*x_2 + 74*x_2^2 + 12*x_2^3 }-> s22 :|: s20 >= 0, s20 <= x_1, s21 >= 0, s21 <= x_2, s22 >= 0, s22 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 10 + -36*z + 2*z^2 + 12*z^3 }-> s31 :|: s30 >= 0, s30 <= z - 2, s31 >= 0, s31 <= 1 + s30, z - 2 >= 0 encArg(z) -{ 84 + s33 + 116*x_128 + 74*x_128^2 + 12*x_128^3 + 116*x_213 + 74*x_213^2 + 12*x_213^3 }-> s35 :|: s32 >= 0, s32 <= x_128, s33 >= 0, s33 <= x_213, s34 >= 0, s34 <= s32, s35 >= 0, s35 <= s34, x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 11 + -36*z + 2*z^2 + 12*z^3 }-> s38 :|: s36 >= 0, s36 <= z - 2, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37, z - 2 >= 0 encArg(z) -{ 100 + 8*s39 + s39*s40 + s39^2 + 8*s40 + s40^2 + 116*x_130 + 74*x_130^2 + 12*x_130^3 + 116*x_214 + 74*x_214^2 + 12*x_214^3 }-> s42 :|: s39 >= 0, s39 <= x_130, s40 >= 0, s40 <= x_214, s41 >= 0, s41 <= 0, s42 >= 0, s42 <= s41, x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ -13 + 4*z + 38*z^2 + 12*z^3 }-> 1 + s16 :|: s16 >= 0, s16 <= z - 1, z - 1 >= 0 encode_-(z, z') -{ 83 + s24 + 116*z + 74*z^2 + 12*z^3 + 116*z' + 74*z'^2 + 12*z'^3 }-> s25 :|: s23 >= 0, s23 <= z, s24 >= 0, s24 <= z', s25 >= 0, s25 <= s23, z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 99 + 8*s27 + s27*s28 + s27^2 + 8*s28 + s28^2 + 116*z + 74*z^2 + 12*z^3 + 116*z' + 74*z'^2 + 12*z'^3 }-> s29 :|: s27 >= 0, s27 <= z, s28 >= 0, s28 <= z', s29 >= 0, s29 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ -12 + 4*z + 38*z^2 + 12*z^3 }-> s44 :|: s43 >= 0, s43 <= z - 1, s44 >= 0, s44 <= 1 + s43, z - 1 >= 0 encode_p(z) -{ 84 + s46 + 116*x_188 + 74*x_188^2 + 12*x_188^3 + 116*x_243 + 74*x_243^2 + 12*x_243^3 }-> s48 :|: s45 >= 0, s45 <= x_188, s46 >= 0, s46 <= x_243, s47 >= 0, s47 <= s45, s48 >= 0, s48 <= s47, z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ -11 + 4*z + 38*z^2 + 12*z^3 }-> s51 :|: s49 >= 0, s49 <= z - 1, s50 >= 0, s50 <= s49, s51 >= 0, s51 <= s50, z - 1 >= 0 encode_p(z) -{ 100 + 8*s52 + s52*s53 + s52^2 + 8*s53 + s53^2 + 116*x_190 + 74*x_190^2 + 12*x_190^3 + 116*x_244 + 74*x_244^2 + 12*x_244^3 }-> s55 :|: s52 >= 0, s52 <= x_190, s53 >= 0, s53 <= x_244, s54 >= 0, s54 <= 0, s55 >= 0, s55 <= s54, x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 41 + 116*z + 74*z^2 + 12*z^3 }-> 1 + s26 :|: s26 >= 0, s26 <= z, z >= 0 f(z, z') -{ 20 + 8*s5 + s5^2 + z' }-> s10 :|: s10 >= 0, s10 <= 0, s5 >= 0, s5 <= s1, s1 >= 0, s1 <= z - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 20 + 8*s6 + s6^2 + z }-> s11 :|: s11 >= 0, s11 <= 0, s6 >= 0, s6 <= s2, s2 >= 0, s2 <= z' - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 18 }-> s12 :|: s12 >= 0, s12 <= 0, z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x + x^2 }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 19 }-> s14 :|: s14 >= 0, s14 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 18 }-> s15 :|: s15 >= 0, s15 <= 0, z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x' + x'^2 }-> s7 :|: s7 >= 0, s7 <= 0, z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 19 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 22 + 8*s3 + s3*s4 + s3^2 + 8*s4 + s4^2 + z + z' }-> s9 :|: s9 >= 0, s9 <= 0, s3 >= 0, s3 <= s', s4 >= 0, s4 <= s'', s' >= 0, s' <= z - 1, s'' >= 0, s'' <= z' - 1, z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {encode_p}, {encode_f}, {encode_-}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] f: runtime: O(n^2) [17 + 8*z + z*z' + z^2 + 8*z' + z'^2], size: O(1) [0] encArg: runtime: O(n^3) [41 + 116*z + 74*z^2 + 12*z^3], size: O(n^1) [z] encode_p: runtime: ?, size: O(n^1) [z] ---------------------------------------- (57) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_p after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 184 + 489*z + 375*z^2 + 72*z^3 ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 83 + s18 + 116*x_1 + 74*x_1^2 + 12*x_1^3 + 116*x_2 + 74*x_2^2 + 12*x_2^3 }-> s19 :|: s17 >= 0, s17 <= x_1, s18 >= 0, s18 <= x_2, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 99 + 8*s20 + s20*s21 + s20^2 + 8*s21 + s21^2 + 116*x_1 + 74*x_1^2 + 12*x_1^3 + 116*x_2 + 74*x_2^2 + 12*x_2^3 }-> s22 :|: s20 >= 0, s20 <= x_1, s21 >= 0, s21 <= x_2, s22 >= 0, s22 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 10 + -36*z + 2*z^2 + 12*z^3 }-> s31 :|: s30 >= 0, s30 <= z - 2, s31 >= 0, s31 <= 1 + s30, z - 2 >= 0 encArg(z) -{ 84 + s33 + 116*x_128 + 74*x_128^2 + 12*x_128^3 + 116*x_213 + 74*x_213^2 + 12*x_213^3 }-> s35 :|: s32 >= 0, s32 <= x_128, s33 >= 0, s33 <= x_213, s34 >= 0, s34 <= s32, s35 >= 0, s35 <= s34, x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 11 + -36*z + 2*z^2 + 12*z^3 }-> s38 :|: s36 >= 0, s36 <= z - 2, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37, z - 2 >= 0 encArg(z) -{ 100 + 8*s39 + s39*s40 + s39^2 + 8*s40 + s40^2 + 116*x_130 + 74*x_130^2 + 12*x_130^3 + 116*x_214 + 74*x_214^2 + 12*x_214^3 }-> s42 :|: s39 >= 0, s39 <= x_130, s40 >= 0, s40 <= x_214, s41 >= 0, s41 <= 0, s42 >= 0, s42 <= s41, x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ -13 + 4*z + 38*z^2 + 12*z^3 }-> 1 + s16 :|: s16 >= 0, s16 <= z - 1, z - 1 >= 0 encode_-(z, z') -{ 83 + s24 + 116*z + 74*z^2 + 12*z^3 + 116*z' + 74*z'^2 + 12*z'^3 }-> s25 :|: s23 >= 0, s23 <= z, s24 >= 0, s24 <= z', s25 >= 0, s25 <= s23, z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 99 + 8*s27 + s27*s28 + s27^2 + 8*s28 + s28^2 + 116*z + 74*z^2 + 12*z^3 + 116*z' + 74*z'^2 + 12*z'^3 }-> s29 :|: s27 >= 0, s27 <= z, s28 >= 0, s28 <= z', s29 >= 0, s29 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ -12 + 4*z + 38*z^2 + 12*z^3 }-> s44 :|: s43 >= 0, s43 <= z - 1, s44 >= 0, s44 <= 1 + s43, z - 1 >= 0 encode_p(z) -{ 84 + s46 + 116*x_188 + 74*x_188^2 + 12*x_188^3 + 116*x_243 + 74*x_243^2 + 12*x_243^3 }-> s48 :|: s45 >= 0, s45 <= x_188, s46 >= 0, s46 <= x_243, s47 >= 0, s47 <= s45, s48 >= 0, s48 <= s47, z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ -11 + 4*z + 38*z^2 + 12*z^3 }-> s51 :|: s49 >= 0, s49 <= z - 1, s50 >= 0, s50 <= s49, s51 >= 0, s51 <= s50, z - 1 >= 0 encode_p(z) -{ 100 + 8*s52 + s52*s53 + s52^2 + 8*s53 + s53^2 + 116*x_190 + 74*x_190^2 + 12*x_190^3 + 116*x_244 + 74*x_244^2 + 12*x_244^3 }-> s55 :|: s52 >= 0, s52 <= x_190, s53 >= 0, s53 <= x_244, s54 >= 0, s54 <= 0, s55 >= 0, s55 <= s54, x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 41 + 116*z + 74*z^2 + 12*z^3 }-> 1 + s26 :|: s26 >= 0, s26 <= z, z >= 0 f(z, z') -{ 20 + 8*s5 + s5^2 + z' }-> s10 :|: s10 >= 0, s10 <= 0, s5 >= 0, s5 <= s1, s1 >= 0, s1 <= z - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 20 + 8*s6 + s6^2 + z }-> s11 :|: s11 >= 0, s11 <= 0, s6 >= 0, s6 <= s2, s2 >= 0, s2 <= z' - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 18 }-> s12 :|: s12 >= 0, s12 <= 0, z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x + x^2 }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 19 }-> s14 :|: s14 >= 0, s14 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 18 }-> s15 :|: s15 >= 0, s15 <= 0, z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x' + x'^2 }-> s7 :|: s7 >= 0, s7 <= 0, z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 19 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 22 + 8*s3 + s3*s4 + s3^2 + 8*s4 + s4^2 + z + z' }-> s9 :|: s9 >= 0, s9 <= 0, s3 >= 0, s3 <= s', s4 >= 0, s4 <= s'', s' >= 0, s' <= z - 1, s'' >= 0, s'' <= z' - 1, z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {encode_f}, {encode_-}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] f: runtime: O(n^2) [17 + 8*z + z*z' + z^2 + 8*z' + z'^2], size: O(1) [0] encArg: runtime: O(n^3) [41 + 116*z + 74*z^2 + 12*z^3], size: O(n^1) [z] encode_p: runtime: O(n^3) [184 + 489*z + 375*z^2 + 72*z^3], size: O(n^1) [z] ---------------------------------------- (59) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 83 + s18 + 116*x_1 + 74*x_1^2 + 12*x_1^3 + 116*x_2 + 74*x_2^2 + 12*x_2^3 }-> s19 :|: s17 >= 0, s17 <= x_1, s18 >= 0, s18 <= x_2, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 99 + 8*s20 + s20*s21 + s20^2 + 8*s21 + s21^2 + 116*x_1 + 74*x_1^2 + 12*x_1^3 + 116*x_2 + 74*x_2^2 + 12*x_2^3 }-> s22 :|: s20 >= 0, s20 <= x_1, s21 >= 0, s21 <= x_2, s22 >= 0, s22 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 10 + -36*z + 2*z^2 + 12*z^3 }-> s31 :|: s30 >= 0, s30 <= z - 2, s31 >= 0, s31 <= 1 + s30, z - 2 >= 0 encArg(z) -{ 84 + s33 + 116*x_128 + 74*x_128^2 + 12*x_128^3 + 116*x_213 + 74*x_213^2 + 12*x_213^3 }-> s35 :|: s32 >= 0, s32 <= x_128, s33 >= 0, s33 <= x_213, s34 >= 0, s34 <= s32, s35 >= 0, s35 <= s34, x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 11 + -36*z + 2*z^2 + 12*z^3 }-> s38 :|: s36 >= 0, s36 <= z - 2, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37, z - 2 >= 0 encArg(z) -{ 100 + 8*s39 + s39*s40 + s39^2 + 8*s40 + s40^2 + 116*x_130 + 74*x_130^2 + 12*x_130^3 + 116*x_214 + 74*x_214^2 + 12*x_214^3 }-> s42 :|: s39 >= 0, s39 <= x_130, s40 >= 0, s40 <= x_214, s41 >= 0, s41 <= 0, s42 >= 0, s42 <= s41, x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ -13 + 4*z + 38*z^2 + 12*z^3 }-> 1 + s16 :|: s16 >= 0, s16 <= z - 1, z - 1 >= 0 encode_-(z, z') -{ 83 + s24 + 116*z + 74*z^2 + 12*z^3 + 116*z' + 74*z'^2 + 12*z'^3 }-> s25 :|: s23 >= 0, s23 <= z, s24 >= 0, s24 <= z', s25 >= 0, s25 <= s23, z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 99 + 8*s27 + s27*s28 + s27^2 + 8*s28 + s28^2 + 116*z + 74*z^2 + 12*z^3 + 116*z' + 74*z'^2 + 12*z'^3 }-> s29 :|: s27 >= 0, s27 <= z, s28 >= 0, s28 <= z', s29 >= 0, s29 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ -12 + 4*z + 38*z^2 + 12*z^3 }-> s44 :|: s43 >= 0, s43 <= z - 1, s44 >= 0, s44 <= 1 + s43, z - 1 >= 0 encode_p(z) -{ 84 + s46 + 116*x_188 + 74*x_188^2 + 12*x_188^3 + 116*x_243 + 74*x_243^2 + 12*x_243^3 }-> s48 :|: s45 >= 0, s45 <= x_188, s46 >= 0, s46 <= x_243, s47 >= 0, s47 <= s45, s48 >= 0, s48 <= s47, z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ -11 + 4*z + 38*z^2 + 12*z^3 }-> s51 :|: s49 >= 0, s49 <= z - 1, s50 >= 0, s50 <= s49, s51 >= 0, s51 <= s50, z - 1 >= 0 encode_p(z) -{ 100 + 8*s52 + s52*s53 + s52^2 + 8*s53 + s53^2 + 116*x_190 + 74*x_190^2 + 12*x_190^3 + 116*x_244 + 74*x_244^2 + 12*x_244^3 }-> s55 :|: s52 >= 0, s52 <= x_190, s53 >= 0, s53 <= x_244, s54 >= 0, s54 <= 0, s55 >= 0, s55 <= s54, x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 41 + 116*z + 74*z^2 + 12*z^3 }-> 1 + s26 :|: s26 >= 0, s26 <= z, z >= 0 f(z, z') -{ 20 + 8*s5 + s5^2 + z' }-> s10 :|: s10 >= 0, s10 <= 0, s5 >= 0, s5 <= s1, s1 >= 0, s1 <= z - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 20 + 8*s6 + s6^2 + z }-> s11 :|: s11 >= 0, s11 <= 0, s6 >= 0, s6 <= s2, s2 >= 0, s2 <= z' - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 18 }-> s12 :|: s12 >= 0, s12 <= 0, z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x + x^2 }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 19 }-> s14 :|: s14 >= 0, s14 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 18 }-> s15 :|: s15 >= 0, s15 <= 0, z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x' + x'^2 }-> s7 :|: s7 >= 0, s7 <= 0, z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 19 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 22 + 8*s3 + s3*s4 + s3^2 + 8*s4 + s4^2 + z + z' }-> s9 :|: s9 >= 0, s9 <= 0, s3 >= 0, s3 <= s', s4 >= 0, s4 <= s'', s' >= 0, s' <= z - 1, s'' >= 0, s'' <= z' - 1, z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {encode_f}, {encode_-}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] f: runtime: O(n^2) [17 + 8*z + z*z' + z^2 + 8*z' + z'^2], size: O(1) [0] encArg: runtime: O(n^3) [41 + 116*z + 74*z^2 + 12*z^3], size: O(n^1) [z] encode_p: runtime: O(n^3) [184 + 489*z + 375*z^2 + 72*z^3], size: O(n^1) [z] ---------------------------------------- (61) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 83 + s18 + 116*x_1 + 74*x_1^2 + 12*x_1^3 + 116*x_2 + 74*x_2^2 + 12*x_2^3 }-> s19 :|: s17 >= 0, s17 <= x_1, s18 >= 0, s18 <= x_2, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 99 + 8*s20 + s20*s21 + s20^2 + 8*s21 + s21^2 + 116*x_1 + 74*x_1^2 + 12*x_1^3 + 116*x_2 + 74*x_2^2 + 12*x_2^3 }-> s22 :|: s20 >= 0, s20 <= x_1, s21 >= 0, s21 <= x_2, s22 >= 0, s22 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 10 + -36*z + 2*z^2 + 12*z^3 }-> s31 :|: s30 >= 0, s30 <= z - 2, s31 >= 0, s31 <= 1 + s30, z - 2 >= 0 encArg(z) -{ 84 + s33 + 116*x_128 + 74*x_128^2 + 12*x_128^3 + 116*x_213 + 74*x_213^2 + 12*x_213^3 }-> s35 :|: s32 >= 0, s32 <= x_128, s33 >= 0, s33 <= x_213, s34 >= 0, s34 <= s32, s35 >= 0, s35 <= s34, x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 11 + -36*z + 2*z^2 + 12*z^3 }-> s38 :|: s36 >= 0, s36 <= z - 2, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37, z - 2 >= 0 encArg(z) -{ 100 + 8*s39 + s39*s40 + s39^2 + 8*s40 + s40^2 + 116*x_130 + 74*x_130^2 + 12*x_130^3 + 116*x_214 + 74*x_214^2 + 12*x_214^3 }-> s42 :|: s39 >= 0, s39 <= x_130, s40 >= 0, s40 <= x_214, s41 >= 0, s41 <= 0, s42 >= 0, s42 <= s41, x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ -13 + 4*z + 38*z^2 + 12*z^3 }-> 1 + s16 :|: s16 >= 0, s16 <= z - 1, z - 1 >= 0 encode_-(z, z') -{ 83 + s24 + 116*z + 74*z^2 + 12*z^3 + 116*z' + 74*z'^2 + 12*z'^3 }-> s25 :|: s23 >= 0, s23 <= z, s24 >= 0, s24 <= z', s25 >= 0, s25 <= s23, z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 99 + 8*s27 + s27*s28 + s27^2 + 8*s28 + s28^2 + 116*z + 74*z^2 + 12*z^3 + 116*z' + 74*z'^2 + 12*z'^3 }-> s29 :|: s27 >= 0, s27 <= z, s28 >= 0, s28 <= z', s29 >= 0, s29 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ -12 + 4*z + 38*z^2 + 12*z^3 }-> s44 :|: s43 >= 0, s43 <= z - 1, s44 >= 0, s44 <= 1 + s43, z - 1 >= 0 encode_p(z) -{ 84 + s46 + 116*x_188 + 74*x_188^2 + 12*x_188^3 + 116*x_243 + 74*x_243^2 + 12*x_243^3 }-> s48 :|: s45 >= 0, s45 <= x_188, s46 >= 0, s46 <= x_243, s47 >= 0, s47 <= s45, s48 >= 0, s48 <= s47, z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ -11 + 4*z + 38*z^2 + 12*z^3 }-> s51 :|: s49 >= 0, s49 <= z - 1, s50 >= 0, s50 <= s49, s51 >= 0, s51 <= s50, z - 1 >= 0 encode_p(z) -{ 100 + 8*s52 + s52*s53 + s52^2 + 8*s53 + s53^2 + 116*x_190 + 74*x_190^2 + 12*x_190^3 + 116*x_244 + 74*x_244^2 + 12*x_244^3 }-> s55 :|: s52 >= 0, s52 <= x_190, s53 >= 0, s53 <= x_244, s54 >= 0, s54 <= 0, s55 >= 0, s55 <= s54, x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 41 + 116*z + 74*z^2 + 12*z^3 }-> 1 + s26 :|: s26 >= 0, s26 <= z, z >= 0 f(z, z') -{ 20 + 8*s5 + s5^2 + z' }-> s10 :|: s10 >= 0, s10 <= 0, s5 >= 0, s5 <= s1, s1 >= 0, s1 <= z - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 20 + 8*s6 + s6^2 + z }-> s11 :|: s11 >= 0, s11 <= 0, s6 >= 0, s6 <= s2, s2 >= 0, s2 <= z' - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 18 }-> s12 :|: s12 >= 0, s12 <= 0, z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x + x^2 }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 19 }-> s14 :|: s14 >= 0, s14 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 18 }-> s15 :|: s15 >= 0, s15 <= 0, z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x' + x'^2 }-> s7 :|: s7 >= 0, s7 <= 0, z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 19 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 22 + 8*s3 + s3*s4 + s3^2 + 8*s4 + s4^2 + z + z' }-> s9 :|: s9 >= 0, s9 <= 0, s3 >= 0, s3 <= s', s4 >= 0, s4 <= s'', s' >= 0, s' <= z - 1, s'' >= 0, s'' <= z' - 1, z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {encode_f}, {encode_-}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] f: runtime: O(n^2) [17 + 8*z + z*z' + z^2 + 8*z' + z'^2], size: O(1) [0] encArg: runtime: O(n^3) [41 + 116*z + 74*z^2 + 12*z^3], size: O(n^1) [z] encode_p: runtime: O(n^3) [184 + 489*z + 375*z^2 + 72*z^3], size: O(n^1) [z] encode_f: runtime: ?, size: O(1) [0] ---------------------------------------- (63) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 99 + 124*z + z*z' + 75*z^2 + 12*z^3 + 124*z' + 75*z'^2 + 12*z'^3 ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 83 + s18 + 116*x_1 + 74*x_1^2 + 12*x_1^3 + 116*x_2 + 74*x_2^2 + 12*x_2^3 }-> s19 :|: s17 >= 0, s17 <= x_1, s18 >= 0, s18 <= x_2, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 99 + 8*s20 + s20*s21 + s20^2 + 8*s21 + s21^2 + 116*x_1 + 74*x_1^2 + 12*x_1^3 + 116*x_2 + 74*x_2^2 + 12*x_2^3 }-> s22 :|: s20 >= 0, s20 <= x_1, s21 >= 0, s21 <= x_2, s22 >= 0, s22 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 10 + -36*z + 2*z^2 + 12*z^3 }-> s31 :|: s30 >= 0, s30 <= z - 2, s31 >= 0, s31 <= 1 + s30, z - 2 >= 0 encArg(z) -{ 84 + s33 + 116*x_128 + 74*x_128^2 + 12*x_128^3 + 116*x_213 + 74*x_213^2 + 12*x_213^3 }-> s35 :|: s32 >= 0, s32 <= x_128, s33 >= 0, s33 <= x_213, s34 >= 0, s34 <= s32, s35 >= 0, s35 <= s34, x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 11 + -36*z + 2*z^2 + 12*z^3 }-> s38 :|: s36 >= 0, s36 <= z - 2, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37, z - 2 >= 0 encArg(z) -{ 100 + 8*s39 + s39*s40 + s39^2 + 8*s40 + s40^2 + 116*x_130 + 74*x_130^2 + 12*x_130^3 + 116*x_214 + 74*x_214^2 + 12*x_214^3 }-> s42 :|: s39 >= 0, s39 <= x_130, s40 >= 0, s40 <= x_214, s41 >= 0, s41 <= 0, s42 >= 0, s42 <= s41, x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ -13 + 4*z + 38*z^2 + 12*z^3 }-> 1 + s16 :|: s16 >= 0, s16 <= z - 1, z - 1 >= 0 encode_-(z, z') -{ 83 + s24 + 116*z + 74*z^2 + 12*z^3 + 116*z' + 74*z'^2 + 12*z'^3 }-> s25 :|: s23 >= 0, s23 <= z, s24 >= 0, s24 <= z', s25 >= 0, s25 <= s23, z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 99 + 8*s27 + s27*s28 + s27^2 + 8*s28 + s28^2 + 116*z + 74*z^2 + 12*z^3 + 116*z' + 74*z'^2 + 12*z'^3 }-> s29 :|: s27 >= 0, s27 <= z, s28 >= 0, s28 <= z', s29 >= 0, s29 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ -12 + 4*z + 38*z^2 + 12*z^3 }-> s44 :|: s43 >= 0, s43 <= z - 1, s44 >= 0, s44 <= 1 + s43, z - 1 >= 0 encode_p(z) -{ 84 + s46 + 116*x_188 + 74*x_188^2 + 12*x_188^3 + 116*x_243 + 74*x_243^2 + 12*x_243^3 }-> s48 :|: s45 >= 0, s45 <= x_188, s46 >= 0, s46 <= x_243, s47 >= 0, s47 <= s45, s48 >= 0, s48 <= s47, z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ -11 + 4*z + 38*z^2 + 12*z^3 }-> s51 :|: s49 >= 0, s49 <= z - 1, s50 >= 0, s50 <= s49, s51 >= 0, s51 <= s50, z - 1 >= 0 encode_p(z) -{ 100 + 8*s52 + s52*s53 + s52^2 + 8*s53 + s53^2 + 116*x_190 + 74*x_190^2 + 12*x_190^3 + 116*x_244 + 74*x_244^2 + 12*x_244^3 }-> s55 :|: s52 >= 0, s52 <= x_190, s53 >= 0, s53 <= x_244, s54 >= 0, s54 <= 0, s55 >= 0, s55 <= s54, x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 41 + 116*z + 74*z^2 + 12*z^3 }-> 1 + s26 :|: s26 >= 0, s26 <= z, z >= 0 f(z, z') -{ 20 + 8*s5 + s5^2 + z' }-> s10 :|: s10 >= 0, s10 <= 0, s5 >= 0, s5 <= s1, s1 >= 0, s1 <= z - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 20 + 8*s6 + s6^2 + z }-> s11 :|: s11 >= 0, s11 <= 0, s6 >= 0, s6 <= s2, s2 >= 0, s2 <= z' - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 18 }-> s12 :|: s12 >= 0, s12 <= 0, z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x + x^2 }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 19 }-> s14 :|: s14 >= 0, s14 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 18 }-> s15 :|: s15 >= 0, s15 <= 0, z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x' + x'^2 }-> s7 :|: s7 >= 0, s7 <= 0, z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 19 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 22 + 8*s3 + s3*s4 + s3^2 + 8*s4 + s4^2 + z + z' }-> s9 :|: s9 >= 0, s9 <= 0, s3 >= 0, s3 <= s', s4 >= 0, s4 <= s'', s' >= 0, s' <= z - 1, s'' >= 0, s'' <= z' - 1, z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {encode_-}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] f: runtime: O(n^2) [17 + 8*z + z*z' + z^2 + 8*z' + z'^2], size: O(1) [0] encArg: runtime: O(n^3) [41 + 116*z + 74*z^2 + 12*z^3], size: O(n^1) [z] encode_p: runtime: O(n^3) [184 + 489*z + 375*z^2 + 72*z^3], size: O(n^1) [z] encode_f: runtime: O(n^3) [99 + 124*z + z*z' + 75*z^2 + 12*z^3 + 124*z' + 75*z'^2 + 12*z'^3], size: O(1) [0] ---------------------------------------- (65) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 83 + s18 + 116*x_1 + 74*x_1^2 + 12*x_1^3 + 116*x_2 + 74*x_2^2 + 12*x_2^3 }-> s19 :|: s17 >= 0, s17 <= x_1, s18 >= 0, s18 <= x_2, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 99 + 8*s20 + s20*s21 + s20^2 + 8*s21 + s21^2 + 116*x_1 + 74*x_1^2 + 12*x_1^3 + 116*x_2 + 74*x_2^2 + 12*x_2^3 }-> s22 :|: s20 >= 0, s20 <= x_1, s21 >= 0, s21 <= x_2, s22 >= 0, s22 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 10 + -36*z + 2*z^2 + 12*z^3 }-> s31 :|: s30 >= 0, s30 <= z - 2, s31 >= 0, s31 <= 1 + s30, z - 2 >= 0 encArg(z) -{ 84 + s33 + 116*x_128 + 74*x_128^2 + 12*x_128^3 + 116*x_213 + 74*x_213^2 + 12*x_213^3 }-> s35 :|: s32 >= 0, s32 <= x_128, s33 >= 0, s33 <= x_213, s34 >= 0, s34 <= s32, s35 >= 0, s35 <= s34, x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 11 + -36*z + 2*z^2 + 12*z^3 }-> s38 :|: s36 >= 0, s36 <= z - 2, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37, z - 2 >= 0 encArg(z) -{ 100 + 8*s39 + s39*s40 + s39^2 + 8*s40 + s40^2 + 116*x_130 + 74*x_130^2 + 12*x_130^3 + 116*x_214 + 74*x_214^2 + 12*x_214^3 }-> s42 :|: s39 >= 0, s39 <= x_130, s40 >= 0, s40 <= x_214, s41 >= 0, s41 <= 0, s42 >= 0, s42 <= s41, x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ -13 + 4*z + 38*z^2 + 12*z^3 }-> 1 + s16 :|: s16 >= 0, s16 <= z - 1, z - 1 >= 0 encode_-(z, z') -{ 83 + s24 + 116*z + 74*z^2 + 12*z^3 + 116*z' + 74*z'^2 + 12*z'^3 }-> s25 :|: s23 >= 0, s23 <= z, s24 >= 0, s24 <= z', s25 >= 0, s25 <= s23, z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 99 + 8*s27 + s27*s28 + s27^2 + 8*s28 + s28^2 + 116*z + 74*z^2 + 12*z^3 + 116*z' + 74*z'^2 + 12*z'^3 }-> s29 :|: s27 >= 0, s27 <= z, s28 >= 0, s28 <= z', s29 >= 0, s29 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ -12 + 4*z + 38*z^2 + 12*z^3 }-> s44 :|: s43 >= 0, s43 <= z - 1, s44 >= 0, s44 <= 1 + s43, z - 1 >= 0 encode_p(z) -{ 84 + s46 + 116*x_188 + 74*x_188^2 + 12*x_188^3 + 116*x_243 + 74*x_243^2 + 12*x_243^3 }-> s48 :|: s45 >= 0, s45 <= x_188, s46 >= 0, s46 <= x_243, s47 >= 0, s47 <= s45, s48 >= 0, s48 <= s47, z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ -11 + 4*z + 38*z^2 + 12*z^3 }-> s51 :|: s49 >= 0, s49 <= z - 1, s50 >= 0, s50 <= s49, s51 >= 0, s51 <= s50, z - 1 >= 0 encode_p(z) -{ 100 + 8*s52 + s52*s53 + s52^2 + 8*s53 + s53^2 + 116*x_190 + 74*x_190^2 + 12*x_190^3 + 116*x_244 + 74*x_244^2 + 12*x_244^3 }-> s55 :|: s52 >= 0, s52 <= x_190, s53 >= 0, s53 <= x_244, s54 >= 0, s54 <= 0, s55 >= 0, s55 <= s54, x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 41 + 116*z + 74*z^2 + 12*z^3 }-> 1 + s26 :|: s26 >= 0, s26 <= z, z >= 0 f(z, z') -{ 20 + 8*s5 + s5^2 + z' }-> s10 :|: s10 >= 0, s10 <= 0, s5 >= 0, s5 <= s1, s1 >= 0, s1 <= z - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 20 + 8*s6 + s6^2 + z }-> s11 :|: s11 >= 0, s11 <= 0, s6 >= 0, s6 <= s2, s2 >= 0, s2 <= z' - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 18 }-> s12 :|: s12 >= 0, s12 <= 0, z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x + x^2 }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 19 }-> s14 :|: s14 >= 0, s14 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 18 }-> s15 :|: s15 >= 0, s15 <= 0, z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x' + x'^2 }-> s7 :|: s7 >= 0, s7 <= 0, z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 19 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 22 + 8*s3 + s3*s4 + s3^2 + 8*s4 + s4^2 + z + z' }-> s9 :|: s9 >= 0, s9 <= 0, s3 >= 0, s3 <= s', s4 >= 0, s4 <= s'', s' >= 0, s' <= z - 1, s'' >= 0, s'' <= z' - 1, z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {encode_-}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] f: runtime: O(n^2) [17 + 8*z + z*z' + z^2 + 8*z' + z'^2], size: O(1) [0] encArg: runtime: O(n^3) [41 + 116*z + 74*z^2 + 12*z^3], size: O(n^1) [z] encode_p: runtime: O(n^3) [184 + 489*z + 375*z^2 + 72*z^3], size: O(n^1) [z] encode_f: runtime: O(n^3) [99 + 124*z + z*z' + 75*z^2 + 12*z^3 + 124*z' + 75*z'^2 + 12*z'^3], size: O(1) [0] ---------------------------------------- (67) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_- after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 83 + s18 + 116*x_1 + 74*x_1^2 + 12*x_1^3 + 116*x_2 + 74*x_2^2 + 12*x_2^3 }-> s19 :|: s17 >= 0, s17 <= x_1, s18 >= 0, s18 <= x_2, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 99 + 8*s20 + s20*s21 + s20^2 + 8*s21 + s21^2 + 116*x_1 + 74*x_1^2 + 12*x_1^3 + 116*x_2 + 74*x_2^2 + 12*x_2^3 }-> s22 :|: s20 >= 0, s20 <= x_1, s21 >= 0, s21 <= x_2, s22 >= 0, s22 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 10 + -36*z + 2*z^2 + 12*z^3 }-> s31 :|: s30 >= 0, s30 <= z - 2, s31 >= 0, s31 <= 1 + s30, z - 2 >= 0 encArg(z) -{ 84 + s33 + 116*x_128 + 74*x_128^2 + 12*x_128^3 + 116*x_213 + 74*x_213^2 + 12*x_213^3 }-> s35 :|: s32 >= 0, s32 <= x_128, s33 >= 0, s33 <= x_213, s34 >= 0, s34 <= s32, s35 >= 0, s35 <= s34, x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 11 + -36*z + 2*z^2 + 12*z^3 }-> s38 :|: s36 >= 0, s36 <= z - 2, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37, z - 2 >= 0 encArg(z) -{ 100 + 8*s39 + s39*s40 + s39^2 + 8*s40 + s40^2 + 116*x_130 + 74*x_130^2 + 12*x_130^3 + 116*x_214 + 74*x_214^2 + 12*x_214^3 }-> s42 :|: s39 >= 0, s39 <= x_130, s40 >= 0, s40 <= x_214, s41 >= 0, s41 <= 0, s42 >= 0, s42 <= s41, x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ -13 + 4*z + 38*z^2 + 12*z^3 }-> 1 + s16 :|: s16 >= 0, s16 <= z - 1, z - 1 >= 0 encode_-(z, z') -{ 83 + s24 + 116*z + 74*z^2 + 12*z^3 + 116*z' + 74*z'^2 + 12*z'^3 }-> s25 :|: s23 >= 0, s23 <= z, s24 >= 0, s24 <= z', s25 >= 0, s25 <= s23, z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 99 + 8*s27 + s27*s28 + s27^2 + 8*s28 + s28^2 + 116*z + 74*z^2 + 12*z^3 + 116*z' + 74*z'^2 + 12*z'^3 }-> s29 :|: s27 >= 0, s27 <= z, s28 >= 0, s28 <= z', s29 >= 0, s29 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ -12 + 4*z + 38*z^2 + 12*z^3 }-> s44 :|: s43 >= 0, s43 <= z - 1, s44 >= 0, s44 <= 1 + s43, z - 1 >= 0 encode_p(z) -{ 84 + s46 + 116*x_188 + 74*x_188^2 + 12*x_188^3 + 116*x_243 + 74*x_243^2 + 12*x_243^3 }-> s48 :|: s45 >= 0, s45 <= x_188, s46 >= 0, s46 <= x_243, s47 >= 0, s47 <= s45, s48 >= 0, s48 <= s47, z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ -11 + 4*z + 38*z^2 + 12*z^3 }-> s51 :|: s49 >= 0, s49 <= z - 1, s50 >= 0, s50 <= s49, s51 >= 0, s51 <= s50, z - 1 >= 0 encode_p(z) -{ 100 + 8*s52 + s52*s53 + s52^2 + 8*s53 + s53^2 + 116*x_190 + 74*x_190^2 + 12*x_190^3 + 116*x_244 + 74*x_244^2 + 12*x_244^3 }-> s55 :|: s52 >= 0, s52 <= x_190, s53 >= 0, s53 <= x_244, s54 >= 0, s54 <= 0, s55 >= 0, s55 <= s54, x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 41 + 116*z + 74*z^2 + 12*z^3 }-> 1 + s26 :|: s26 >= 0, s26 <= z, z >= 0 f(z, z') -{ 20 + 8*s5 + s5^2 + z' }-> s10 :|: s10 >= 0, s10 <= 0, s5 >= 0, s5 <= s1, s1 >= 0, s1 <= z - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 20 + 8*s6 + s6^2 + z }-> s11 :|: s11 >= 0, s11 <= 0, s6 >= 0, s6 <= s2, s2 >= 0, s2 <= z' - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 18 }-> s12 :|: s12 >= 0, s12 <= 0, z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x + x^2 }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 19 }-> s14 :|: s14 >= 0, s14 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 18 }-> s15 :|: s15 >= 0, s15 <= 0, z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x' + x'^2 }-> s7 :|: s7 >= 0, s7 <= 0, z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 19 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 22 + 8*s3 + s3*s4 + s3^2 + 8*s4 + s4^2 + z + z' }-> s9 :|: s9 >= 0, s9 <= 0, s3 >= 0, s3 <= s', s4 >= 0, s4 <= s'', s' >= 0, s' <= z - 1, s'' >= 0, s'' <= z' - 1, z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {encode_-}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] f: runtime: O(n^2) [17 + 8*z + z*z' + z^2 + 8*z' + z'^2], size: O(1) [0] encArg: runtime: O(n^3) [41 + 116*z + 74*z^2 + 12*z^3], size: O(n^1) [z] encode_p: runtime: O(n^3) [184 + 489*z + 375*z^2 + 72*z^3], size: O(n^1) [z] encode_f: runtime: O(n^3) [99 + 124*z + z*z' + 75*z^2 + 12*z^3 + 124*z' + 75*z'^2 + 12*z'^3], size: O(1) [0] encode_-: runtime: ?, size: O(n^1) [z] ---------------------------------------- (69) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_- after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 83 + 116*z + 74*z^2 + 12*z^3 + 117*z' + 74*z'^2 + 12*z'^3 ---------------------------------------- (70) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 83 + s18 + 116*x_1 + 74*x_1^2 + 12*x_1^3 + 116*x_2 + 74*x_2^2 + 12*x_2^3 }-> s19 :|: s17 >= 0, s17 <= x_1, s18 >= 0, s18 <= x_2, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 99 + 8*s20 + s20*s21 + s20^2 + 8*s21 + s21^2 + 116*x_1 + 74*x_1^2 + 12*x_1^3 + 116*x_2 + 74*x_2^2 + 12*x_2^3 }-> s22 :|: s20 >= 0, s20 <= x_1, s21 >= 0, s21 <= x_2, s22 >= 0, s22 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 10 + -36*z + 2*z^2 + 12*z^3 }-> s31 :|: s30 >= 0, s30 <= z - 2, s31 >= 0, s31 <= 1 + s30, z - 2 >= 0 encArg(z) -{ 84 + s33 + 116*x_128 + 74*x_128^2 + 12*x_128^3 + 116*x_213 + 74*x_213^2 + 12*x_213^3 }-> s35 :|: s32 >= 0, s32 <= x_128, s33 >= 0, s33 <= x_213, s34 >= 0, s34 <= s32, s35 >= 0, s35 <= s34, x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 11 + -36*z + 2*z^2 + 12*z^3 }-> s38 :|: s36 >= 0, s36 <= z - 2, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37, z - 2 >= 0 encArg(z) -{ 100 + 8*s39 + s39*s40 + s39^2 + 8*s40 + s40^2 + 116*x_130 + 74*x_130^2 + 12*x_130^3 + 116*x_214 + 74*x_214^2 + 12*x_214^3 }-> s42 :|: s39 >= 0, s39 <= x_130, s40 >= 0, s40 <= x_214, s41 >= 0, s41 <= 0, s42 >= 0, s42 <= s41, x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ -13 + 4*z + 38*z^2 + 12*z^3 }-> 1 + s16 :|: s16 >= 0, s16 <= z - 1, z - 1 >= 0 encode_-(z, z') -{ 83 + s24 + 116*z + 74*z^2 + 12*z^3 + 116*z' + 74*z'^2 + 12*z'^3 }-> s25 :|: s23 >= 0, s23 <= z, s24 >= 0, s24 <= z', s25 >= 0, s25 <= s23, z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 99 + 8*s27 + s27*s28 + s27^2 + 8*s28 + s28^2 + 116*z + 74*z^2 + 12*z^3 + 116*z' + 74*z'^2 + 12*z'^3 }-> s29 :|: s27 >= 0, s27 <= z, s28 >= 0, s28 <= z', s29 >= 0, s29 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ -12 + 4*z + 38*z^2 + 12*z^3 }-> s44 :|: s43 >= 0, s43 <= z - 1, s44 >= 0, s44 <= 1 + s43, z - 1 >= 0 encode_p(z) -{ 84 + s46 + 116*x_188 + 74*x_188^2 + 12*x_188^3 + 116*x_243 + 74*x_243^2 + 12*x_243^3 }-> s48 :|: s45 >= 0, s45 <= x_188, s46 >= 0, s46 <= x_243, s47 >= 0, s47 <= s45, s48 >= 0, s48 <= s47, z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ -11 + 4*z + 38*z^2 + 12*z^3 }-> s51 :|: s49 >= 0, s49 <= z - 1, s50 >= 0, s50 <= s49, s51 >= 0, s51 <= s50, z - 1 >= 0 encode_p(z) -{ 100 + 8*s52 + s52*s53 + s52^2 + 8*s53 + s53^2 + 116*x_190 + 74*x_190^2 + 12*x_190^3 + 116*x_244 + 74*x_244^2 + 12*x_244^3 }-> s55 :|: s52 >= 0, s52 <= x_190, s53 >= 0, s53 <= x_244, s54 >= 0, s54 <= 0, s55 >= 0, s55 <= s54, x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 41 + 116*z + 74*z^2 + 12*z^3 }-> 1 + s26 :|: s26 >= 0, s26 <= z, z >= 0 f(z, z') -{ 20 + 8*s5 + s5^2 + z' }-> s10 :|: s10 >= 0, s10 <= 0, s5 >= 0, s5 <= s1, s1 >= 0, s1 <= z - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 20 + 8*s6 + s6^2 + z }-> s11 :|: s11 >= 0, s11 <= 0, s6 >= 0, s6 <= s2, s2 >= 0, s2 <= z' - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 18 }-> s12 :|: s12 >= 0, s12 <= 0, z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x + x^2 }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 19 }-> s14 :|: s14 >= 0, s14 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 18 }-> s15 :|: s15 >= 0, s15 <= 0, z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x' + x'^2 }-> s7 :|: s7 >= 0, s7 <= 0, z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 19 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 22 + 8*s3 + s3*s4 + s3^2 + 8*s4 + s4^2 + z + z' }-> s9 :|: s9 >= 0, s9 <= 0, s3 >= 0, s3 <= s', s4 >= 0, s4 <= s'', s' >= 0, s' <= z - 1, s'' >= 0, s'' <= z' - 1, z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] f: runtime: O(n^2) [17 + 8*z + z*z' + z^2 + 8*z' + z'^2], size: O(1) [0] encArg: runtime: O(n^3) [41 + 116*z + 74*z^2 + 12*z^3], size: O(n^1) [z] encode_p: runtime: O(n^3) [184 + 489*z + 375*z^2 + 72*z^3], size: O(n^1) [z] encode_f: runtime: O(n^3) [99 + 124*z + z*z' + 75*z^2 + 12*z^3 + 124*z' + 75*z'^2 + 12*z'^3], size: O(1) [0] encode_-: runtime: O(n^3) [83 + 116*z + 74*z^2 + 12*z^3 + 117*z' + 74*z'^2 + 12*z'^3], size: O(n^1) [z] ---------------------------------------- (71) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (72) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 83 + s18 + 116*x_1 + 74*x_1^2 + 12*x_1^3 + 116*x_2 + 74*x_2^2 + 12*x_2^3 }-> s19 :|: s17 >= 0, s17 <= x_1, s18 >= 0, s18 <= x_2, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 99 + 8*s20 + s20*s21 + s20^2 + 8*s21 + s21^2 + 116*x_1 + 74*x_1^2 + 12*x_1^3 + 116*x_2 + 74*x_2^2 + 12*x_2^3 }-> s22 :|: s20 >= 0, s20 <= x_1, s21 >= 0, s21 <= x_2, s22 >= 0, s22 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 10 + -36*z + 2*z^2 + 12*z^3 }-> s31 :|: s30 >= 0, s30 <= z - 2, s31 >= 0, s31 <= 1 + s30, z - 2 >= 0 encArg(z) -{ 84 + s33 + 116*x_128 + 74*x_128^2 + 12*x_128^3 + 116*x_213 + 74*x_213^2 + 12*x_213^3 }-> s35 :|: s32 >= 0, s32 <= x_128, s33 >= 0, s33 <= x_213, s34 >= 0, s34 <= s32, s35 >= 0, s35 <= s34, x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 11 + -36*z + 2*z^2 + 12*z^3 }-> s38 :|: s36 >= 0, s36 <= z - 2, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37, z - 2 >= 0 encArg(z) -{ 100 + 8*s39 + s39*s40 + s39^2 + 8*s40 + s40^2 + 116*x_130 + 74*x_130^2 + 12*x_130^3 + 116*x_214 + 74*x_214^2 + 12*x_214^3 }-> s42 :|: s39 >= 0, s39 <= x_130, s40 >= 0, s40 <= x_214, s41 >= 0, s41 <= 0, s42 >= 0, s42 <= s41, x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ -13 + 4*z + 38*z^2 + 12*z^3 }-> 1 + s16 :|: s16 >= 0, s16 <= z - 1, z - 1 >= 0 encode_-(z, z') -{ 83 + s24 + 116*z + 74*z^2 + 12*z^3 + 116*z' + 74*z'^2 + 12*z'^3 }-> s25 :|: s23 >= 0, s23 <= z, s24 >= 0, s24 <= z', s25 >= 0, s25 <= s23, z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 99 + 8*s27 + s27*s28 + s27^2 + 8*s28 + s28^2 + 116*z + 74*z^2 + 12*z^3 + 116*z' + 74*z'^2 + 12*z'^3 }-> s29 :|: s27 >= 0, s27 <= z, s28 >= 0, s28 <= z', s29 >= 0, s29 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ -12 + 4*z + 38*z^2 + 12*z^3 }-> s44 :|: s43 >= 0, s43 <= z - 1, s44 >= 0, s44 <= 1 + s43, z - 1 >= 0 encode_p(z) -{ 84 + s46 + 116*x_188 + 74*x_188^2 + 12*x_188^3 + 116*x_243 + 74*x_243^2 + 12*x_243^3 }-> s48 :|: s45 >= 0, s45 <= x_188, s46 >= 0, s46 <= x_243, s47 >= 0, s47 <= s45, s48 >= 0, s48 <= s47, z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ -11 + 4*z + 38*z^2 + 12*z^3 }-> s51 :|: s49 >= 0, s49 <= z - 1, s50 >= 0, s50 <= s49, s51 >= 0, s51 <= s50, z - 1 >= 0 encode_p(z) -{ 100 + 8*s52 + s52*s53 + s52^2 + 8*s53 + s53^2 + 116*x_190 + 74*x_190^2 + 12*x_190^3 + 116*x_244 + 74*x_244^2 + 12*x_244^3 }-> s55 :|: s52 >= 0, s52 <= x_190, s53 >= 0, s53 <= x_244, s54 >= 0, s54 <= 0, s55 >= 0, s55 <= s54, x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 41 + 116*z + 74*z^2 + 12*z^3 }-> 1 + s26 :|: s26 >= 0, s26 <= z, z >= 0 f(z, z') -{ 20 + 8*s5 + s5^2 + z' }-> s10 :|: s10 >= 0, s10 <= 0, s5 >= 0, s5 <= s1, s1 >= 0, s1 <= z - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 20 + 8*s6 + s6^2 + z }-> s11 :|: s11 >= 0, s11 <= 0, s6 >= 0, s6 <= s2, s2 >= 0, s2 <= z' - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 18 }-> s12 :|: s12 >= 0, s12 <= 0, z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x + x^2 }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 19 }-> s14 :|: s14 >= 0, s14 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 18 }-> s15 :|: s15 >= 0, s15 <= 0, z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x' + x'^2 }-> s7 :|: s7 >= 0, s7 <= 0, z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 19 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 22 + 8*s3 + s3*s4 + s3^2 + 8*s4 + s4^2 + z + z' }-> s9 :|: s9 >= 0, s9 <= 0, s3 >= 0, s3 <= s', s4 >= 0, s4 <= s'', s' >= 0, s' <= z - 1, s'' >= 0, s'' <= z' - 1, z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] f: runtime: O(n^2) [17 + 8*z + z*z' + z^2 + 8*z' + z'^2], size: O(1) [0] encArg: runtime: O(n^3) [41 + 116*z + 74*z^2 + 12*z^3], size: O(n^1) [z] encode_p: runtime: O(n^3) [184 + 489*z + 375*z^2 + 72*z^3], size: O(n^1) [z] encode_f: runtime: O(n^3) [99 + 124*z + z*z' + 75*z^2 + 12*z^3 + 124*z' + 75*z'^2 + 12*z'^3], size: O(1) [0] encode_-: runtime: O(n^3) [83 + 116*z + 74*z^2 + 12*z^3 + 117*z' + 74*z'^2 + 12*z'^3], size: O(n^1) [z] ---------------------------------------- (73) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (74) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 83 + s18 + 116*x_1 + 74*x_1^2 + 12*x_1^3 + 116*x_2 + 74*x_2^2 + 12*x_2^3 }-> s19 :|: s17 >= 0, s17 <= x_1, s18 >= 0, s18 <= x_2, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 99 + 8*s20 + s20*s21 + s20^2 + 8*s21 + s21^2 + 116*x_1 + 74*x_1^2 + 12*x_1^3 + 116*x_2 + 74*x_2^2 + 12*x_2^3 }-> s22 :|: s20 >= 0, s20 <= x_1, s21 >= 0, s21 <= x_2, s22 >= 0, s22 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 10 + -36*z + 2*z^2 + 12*z^3 }-> s31 :|: s30 >= 0, s30 <= z - 2, s31 >= 0, s31 <= 1 + s30, z - 2 >= 0 encArg(z) -{ 84 + s33 + 116*x_128 + 74*x_128^2 + 12*x_128^3 + 116*x_213 + 74*x_213^2 + 12*x_213^3 }-> s35 :|: s32 >= 0, s32 <= x_128, s33 >= 0, s33 <= x_213, s34 >= 0, s34 <= s32, s35 >= 0, s35 <= s34, x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 11 + -36*z + 2*z^2 + 12*z^3 }-> s38 :|: s36 >= 0, s36 <= z - 2, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37, z - 2 >= 0 encArg(z) -{ 100 + 8*s39 + s39*s40 + s39^2 + 8*s40 + s40^2 + 116*x_130 + 74*x_130^2 + 12*x_130^3 + 116*x_214 + 74*x_214^2 + 12*x_214^3 }-> s42 :|: s39 >= 0, s39 <= x_130, s40 >= 0, s40 <= x_214, s41 >= 0, s41 <= 0, s42 >= 0, s42 <= s41, x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ -13 + 4*z + 38*z^2 + 12*z^3 }-> 1 + s16 :|: s16 >= 0, s16 <= z - 1, z - 1 >= 0 encode_-(z, z') -{ 83 + s24 + 116*z + 74*z^2 + 12*z^3 + 116*z' + 74*z'^2 + 12*z'^3 }-> s25 :|: s23 >= 0, s23 <= z, s24 >= 0, s24 <= z', s25 >= 0, s25 <= s23, z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 99 + 8*s27 + s27*s28 + s27^2 + 8*s28 + s28^2 + 116*z + 74*z^2 + 12*z^3 + 116*z' + 74*z'^2 + 12*z'^3 }-> s29 :|: s27 >= 0, s27 <= z, s28 >= 0, s28 <= z', s29 >= 0, s29 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ -12 + 4*z + 38*z^2 + 12*z^3 }-> s44 :|: s43 >= 0, s43 <= z - 1, s44 >= 0, s44 <= 1 + s43, z - 1 >= 0 encode_p(z) -{ 84 + s46 + 116*x_188 + 74*x_188^2 + 12*x_188^3 + 116*x_243 + 74*x_243^2 + 12*x_243^3 }-> s48 :|: s45 >= 0, s45 <= x_188, s46 >= 0, s46 <= x_243, s47 >= 0, s47 <= s45, s48 >= 0, s48 <= s47, z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ -11 + 4*z + 38*z^2 + 12*z^3 }-> s51 :|: s49 >= 0, s49 <= z - 1, s50 >= 0, s50 <= s49, s51 >= 0, s51 <= s50, z - 1 >= 0 encode_p(z) -{ 100 + 8*s52 + s52*s53 + s52^2 + 8*s53 + s53^2 + 116*x_190 + 74*x_190^2 + 12*x_190^3 + 116*x_244 + 74*x_244^2 + 12*x_244^3 }-> s55 :|: s52 >= 0, s52 <= x_190, s53 >= 0, s53 <= x_244, s54 >= 0, s54 <= 0, s55 >= 0, s55 <= s54, x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 41 + 116*z + 74*z^2 + 12*z^3 }-> 1 + s26 :|: s26 >= 0, s26 <= z, z >= 0 f(z, z') -{ 20 + 8*s5 + s5^2 + z' }-> s10 :|: s10 >= 0, s10 <= 0, s5 >= 0, s5 <= s1, s1 >= 0, s1 <= z - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 20 + 8*s6 + s6^2 + z }-> s11 :|: s11 >= 0, s11 <= 0, s6 >= 0, s6 <= s2, s2 >= 0, s2 <= z' - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 18 }-> s12 :|: s12 >= 0, s12 <= 0, z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x + x^2 }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 19 }-> s14 :|: s14 >= 0, s14 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 18 }-> s15 :|: s15 >= 0, s15 <= 0, z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x' + x'^2 }-> s7 :|: s7 >= 0, s7 <= 0, z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 19 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 22 + 8*s3 + s3*s4 + s3^2 + 8*s4 + s4^2 + z + z' }-> s9 :|: s9 >= 0, s9 <= 0, s3 >= 0, s3 <= s', s4 >= 0, s4 <= s'', s' >= 0, s' <= z - 1, s'' >= 0, s'' <= z' - 1, z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] f: runtime: O(n^2) [17 + 8*z + z*z' + z^2 + 8*z' + z'^2], size: O(1) [0] encArg: runtime: O(n^3) [41 + 116*z + 74*z^2 + 12*z^3], size: O(n^1) [z] encode_p: runtime: O(n^3) [184 + 489*z + 375*z^2 + 72*z^3], size: O(n^1) [z] encode_f: runtime: O(n^3) [99 + 124*z + z*z' + 75*z^2 + 12*z^3 + 124*z' + 75*z'^2 + 12*z'^3], size: O(1) [0] encode_-: runtime: O(n^3) [83 + 116*z + 74*z^2 + 12*z^3 + 117*z' + 74*z'^2 + 12*z'^3], size: O(n^1) [z] encode_s: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (75) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 41 + 116*z + 74*z^2 + 12*z^3 ---------------------------------------- (76) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 83 + s18 + 116*x_1 + 74*x_1^2 + 12*x_1^3 + 116*x_2 + 74*x_2^2 + 12*x_2^3 }-> s19 :|: s17 >= 0, s17 <= x_1, s18 >= 0, s18 <= x_2, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 99 + 8*s20 + s20*s21 + s20^2 + 8*s21 + s21^2 + 116*x_1 + 74*x_1^2 + 12*x_1^3 + 116*x_2 + 74*x_2^2 + 12*x_2^3 }-> s22 :|: s20 >= 0, s20 <= x_1, s21 >= 0, s21 <= x_2, s22 >= 0, s22 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 10 + -36*z + 2*z^2 + 12*z^3 }-> s31 :|: s30 >= 0, s30 <= z - 2, s31 >= 0, s31 <= 1 + s30, z - 2 >= 0 encArg(z) -{ 84 + s33 + 116*x_128 + 74*x_128^2 + 12*x_128^3 + 116*x_213 + 74*x_213^2 + 12*x_213^3 }-> s35 :|: s32 >= 0, s32 <= x_128, s33 >= 0, s33 <= x_213, s34 >= 0, s34 <= s32, s35 >= 0, s35 <= s34, x_128 >= 0, x_213 >= 0, z = 1 + (1 + x_128 + x_213) encArg(z) -{ 11 + -36*z + 2*z^2 + 12*z^3 }-> s38 :|: s36 >= 0, s36 <= z - 2, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37, z - 2 >= 0 encArg(z) -{ 100 + 8*s39 + s39*s40 + s39^2 + 8*s40 + s40^2 + 116*x_130 + 74*x_130^2 + 12*x_130^3 + 116*x_214 + 74*x_214^2 + 12*x_214^3 }-> s42 :|: s39 >= 0, s39 <= x_130, s40 >= 0, s40 <= x_214, s41 >= 0, s41 <= 0, s42 >= 0, s42 <= s41, x_130 >= 0, z = 1 + (1 + x_130 + x_214), x_214 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ -13 + 4*z + 38*z^2 + 12*z^3 }-> 1 + s16 :|: s16 >= 0, s16 <= z - 1, z - 1 >= 0 encode_-(z, z') -{ 83 + s24 + 116*z + 74*z^2 + 12*z^3 + 116*z' + 74*z'^2 + 12*z'^3 }-> s25 :|: s23 >= 0, s23 <= z, s24 >= 0, s24 <= z', s25 >= 0, s25 <= s23, z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z, z') -{ 99 + 8*s27 + s27*s28 + s27^2 + 8*s28 + s28^2 + 116*z + 74*z^2 + 12*z^3 + 116*z' + 74*z'^2 + 12*z'^3 }-> s29 :|: s27 >= 0, s27 <= z, s28 >= 0, s28 <= z', s29 >= 0, s29 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_p(z) -{ -12 + 4*z + 38*z^2 + 12*z^3 }-> s44 :|: s43 >= 0, s43 <= z - 1, s44 >= 0, s44 <= 1 + s43, z - 1 >= 0 encode_p(z) -{ 84 + s46 + 116*x_188 + 74*x_188^2 + 12*x_188^3 + 116*x_243 + 74*x_243^2 + 12*x_243^3 }-> s48 :|: s45 >= 0, s45 <= x_188, s46 >= 0, s46 <= x_243, s47 >= 0, s47 <= s45, s48 >= 0, s48 <= s47, z = 1 + x_188 + x_243, x_243 >= 0, x_188 >= 0 encode_p(z) -{ -11 + 4*z + 38*z^2 + 12*z^3 }-> s51 :|: s49 >= 0, s49 <= z - 1, s50 >= 0, s50 <= s49, s51 >= 0, s51 <= s50, z - 1 >= 0 encode_p(z) -{ 100 + 8*s52 + s52*s53 + s52^2 + 8*s53 + s53^2 + 116*x_190 + 74*x_190^2 + 12*x_190^3 + 116*x_244 + 74*x_244^2 + 12*x_244^3 }-> s55 :|: s52 >= 0, s52 <= x_190, s53 >= 0, s53 <= x_244, s54 >= 0, s54 <= 0, s55 >= 0, s55 <= s54, x_244 >= 0, x_190 >= 0, z = 1 + x_190 + x_244 encode_p(z) -{ 0 }-> 0 :|: z >= 0 encode_p(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_p(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 41 + 116*z + 74*z^2 + 12*z^3 }-> 1 + s26 :|: s26 >= 0, s26 <= z, z >= 0 f(z, z') -{ 20 + 8*s5 + s5^2 + z' }-> s10 :|: s10 >= 0, s10 <= 0, s5 >= 0, s5 <= s1, s1 >= 0, s1 <= z - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 20 + 8*s6 + s6^2 + z }-> s11 :|: s11 >= 0, s11 <= 0, s6 >= 0, s6 <= s2, s2 >= 0, s2 <= z' - 1, z - 1 >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0 f(z, z') -{ 18 }-> s12 :|: s12 >= 0, s12 <= 0, z - 1 >= 0, z' >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x + x^2 }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, x >= 0, 1 + (z' - 1) = 1 + x f(z, z') -{ 19 }-> s14 :|: s14 >= 0, s14 <= 0, z' - 1 >= 0, z = 0, v0 >= 0, 0 = v0, v0' >= 0, 1 + (z' - 1) = v0' f(z, z') -{ 18 }-> s15 :|: s15 >= 0, s15 <= 0, z >= 0, z' - 1 >= 0, v0 >= 0, 0 = v0, v0' >= 0, 0 = v0' f(z, z') -{ 20 + 8*x' + x'^2 }-> s7 :|: s7 >= 0, s7 <= 0, z - 1 >= 0, z' = 0, x' >= 0, 1 + (z - 1) = 1 + x', v0 >= 0, 0 = v0 f(z, z') -{ 19 }-> s8 :|: s8 >= 0, s8 <= 0, z - 1 >= 0, z' = 0, v0 >= 0, 1 + (z - 1) = v0, v0' >= 0, 0 = v0' f(z, z') -{ 22 + 8*s3 + s3*s4 + s3^2 + 8*s4 + s4^2 + z + z' }-> s9 :|: s9 >= 0, s9 <= 0, s3 >= 0, s3 <= s', s4 >= 0, s4 <= s'', s' >= 0, s' <= z - 1, s'' >= 0, s'' <= z' - 1, z - 1 >= 0, z' - 1 >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] f: runtime: O(n^2) [17 + 8*z + z*z' + z^2 + 8*z' + z'^2], size: O(1) [0] encArg: runtime: O(n^3) [41 + 116*z + 74*z^2 + 12*z^3], size: O(n^1) [z] encode_p: runtime: O(n^3) [184 + 489*z + 375*z^2 + 72*z^3], size: O(n^1) [z] encode_f: runtime: O(n^3) [99 + 124*z + z*z' + 75*z^2 + 12*z^3 + 124*z' + 75*z'^2 + 12*z'^3], size: O(1) [0] encode_-: runtime: O(n^3) [83 + 116*z + 74*z^2 + 12*z^3 + 117*z' + 74*z'^2 + 12*z'^3], size: O(n^1) [z] encode_s: runtime: O(n^3) [41 + 116*z + 74*z^2 + 12*z^3], size: O(n^1) [1 + z] ---------------------------------------- (77) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (78) BOUNDS(1, n^3) ---------------------------------------- (79) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (80) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: -(x, 0) -> x -(s(x), s(y)) -> -(x, y) p(s(x)) -> x f(s(x), y) -> f(p(-(s(x), y)), p(-(y, s(x)))) f(x, s(y)) -> f(p(-(x, s(y))), p(-(s(y), x))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (81) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence -(s(x), s(y)) ->^+ -(x, y) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(x), y / s(y)]. The result substitution is [ ]. ---------------------------------------- (82) Complex Obligation (BEST) ---------------------------------------- (83) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: -(x, 0) -> x -(s(x), s(y)) -> -(x, y) p(s(x)) -> x f(s(x), y) -> f(p(-(s(x), y)), p(-(y, s(x)))) f(x, s(y)) -> f(p(-(x, s(y))), p(-(s(y), x))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (84) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (85) BOUNDS(n^1, INF) ---------------------------------------- (86) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: -(x, 0) -> x -(s(x), s(y)) -> -(x, y) p(s(x)) -> x f(s(x), y) -> f(p(-(s(x), y)), p(-(y, s(x)))) f(x, s(y)) -> f(p(-(x, s(y))), p(-(s(y), x))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST