/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 152 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (14) CdtProblem (15) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CdtProblem (17) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CdtProblem (19) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CdtProblem (21) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CdtProblem (23) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CdtProblem (25) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (26) CdtProblem (27) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 18 ms] (28) CdtProblem (29) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 24 ms] (30) CdtProblem (31) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (32) CdtProblem (33) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (34) CdtProblem (35) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (36) CdtProblem (37) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 15 ms] (38) CdtProblem (39) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (40) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(y, f(x, f(a, x))) -> f(f(a, f(x, a)), f(a, y)) f(x, f(x, y)) -> f(f(f(x, a), a), a) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a) -> a encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(y, f(x, f(a, x))) -> f(f(a, f(x, a)), f(a, y)) f(x, f(x, y)) -> f(f(f(x, a), a), a) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(y, f(x, f(a, x))) -> f(f(a, f(x, a)), f(a, y)) f(x, f(x, y)) -> f(f(f(x, a), a), a) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_a -> a f(z0, f(z1, f(a, z1))) -> f(f(a, f(z1, a)), f(a, z0)) f(z0, f(z0, z1)) -> f(f(f(z0, a), a), a) Tuples: ENCARG(a) -> c ENCARG(cons_f(z0, z1)) -> c1(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_F(z0, z1) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_A -> c3 F(z0, f(z1, f(a, z1))) -> c4(F(f(a, f(z1, a)), f(a, z0)), F(a, f(z1, a)), F(z1, a), F(a, z0)) F(z0, f(z0, z1)) -> c5(F(f(f(z0, a), a), a), F(f(z0, a), a), F(z0, a)) S tuples: F(z0, f(z1, f(a, z1))) -> c4(F(f(a, f(z1, a)), f(a, z0)), F(a, f(z1, a)), F(z1, a), F(a, z0)) F(z0, f(z0, z1)) -> c5(F(f(f(z0, a), a), a), F(f(z0, a), a), F(z0, a)) K tuples:none Defined Rule Symbols: f_2, encArg_1, encode_f_2, encode_a Defined Pair Symbols: ENCARG_1, ENCODE_F_2, ENCODE_A, F_2 Compound Symbols: c, c1_3, c2_3, c3, c4_4, c5_3 ---------------------------------------- (7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing nodes: ENCODE_A -> c3 ENCARG(a) -> c ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_a -> a f(z0, f(z1, f(a, z1))) -> f(f(a, f(z1, a)), f(a, z0)) f(z0, f(z0, z1)) -> f(f(f(z0, a), a), a) Tuples: ENCARG(cons_f(z0, z1)) -> c1(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_F(z0, z1) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(z0, f(z1, f(a, z1))) -> c4(F(f(a, f(z1, a)), f(a, z0)), F(a, f(z1, a)), F(z1, a), F(a, z0)) F(z0, f(z0, z1)) -> c5(F(f(f(z0, a), a), a), F(f(z0, a), a), F(z0, a)) S tuples: F(z0, f(z1, f(a, z1))) -> c4(F(f(a, f(z1, a)), f(a, z0)), F(a, f(z1, a)), F(z1, a), F(a, z0)) F(z0, f(z0, z1)) -> c5(F(f(f(z0, a), a), a), F(f(z0, a), a), F(z0, a)) K tuples:none Defined Rule Symbols: f_2, encArg_1, encode_f_2, encode_a Defined Pair Symbols: ENCARG_1, ENCODE_F_2, F_2 Compound Symbols: c1_3, c2_3, c4_4, c5_3 ---------------------------------------- (9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 4 trailing tuple parts ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_a -> a f(z0, f(z1, f(a, z1))) -> f(f(a, f(z1, a)), f(a, z0)) f(z0, f(z0, z1)) -> f(f(f(z0, a), a), a) Tuples: ENCARG(cons_f(z0, z1)) -> c1(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_F(z0, z1) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(z0, f(z1, f(a, z1))) -> c4(F(f(a, f(z1, a)), f(a, z0)), F(a, f(z1, a)), F(a, z0)) F(z0, f(z0, z1)) -> c5 S tuples: F(z0, f(z1, f(a, z1))) -> c4(F(f(a, f(z1, a)), f(a, z0)), F(a, f(z1, a)), F(a, z0)) F(z0, f(z0, z1)) -> c5 K tuples:none Defined Rule Symbols: f_2, encArg_1, encode_f_2, encode_a Defined Pair Symbols: ENCARG_1, ENCODE_F_2, F_2 Compound Symbols: c1_3, c2_3, c4_3, c5 ---------------------------------------- (11) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_a -> a f(z0, f(z1, f(a, z1))) -> f(f(a, f(z1, a)), f(a, z0)) f(z0, f(z0, z1)) -> f(f(f(z0, a), a), a) Tuples: ENCARG(cons_f(z0, z1)) -> c1(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(z0, f(z1, f(a, z1))) -> c4(F(f(a, f(z1, a)), f(a, z0)), F(a, f(z1, a)), F(a, z0)) F(z0, f(z0, z1)) -> c5 ENCODE_F(z0, z1) -> c(F(encArg(z0), encArg(z1))) ENCODE_F(z0, z1) -> c(ENCARG(z0)) ENCODE_F(z0, z1) -> c(ENCARG(z1)) S tuples: F(z0, f(z1, f(a, z1))) -> c4(F(f(a, f(z1, a)), f(a, z0)), F(a, f(z1, a)), F(a, z0)) F(z0, f(z0, z1)) -> c5 K tuples:none Defined Rule Symbols: f_2, encArg_1, encode_f_2, encode_a Defined Pair Symbols: ENCARG_1, F_2, ENCODE_F_2 Compound Symbols: c1_3, c4_3, c5, c_1 ---------------------------------------- (13) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_F(z0, z1) -> c(ENCARG(z0)) ENCODE_F(z0, z1) -> c(ENCARG(z1)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_a -> a f(z0, f(z1, f(a, z1))) -> f(f(a, f(z1, a)), f(a, z0)) f(z0, f(z0, z1)) -> f(f(f(z0, a), a), a) Tuples: ENCARG(cons_f(z0, z1)) -> c1(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(z0, f(z1, f(a, z1))) -> c4(F(f(a, f(z1, a)), f(a, z0)), F(a, f(z1, a)), F(a, z0)) F(z0, f(z0, z1)) -> c5 ENCODE_F(z0, z1) -> c(F(encArg(z0), encArg(z1))) S tuples: F(z0, f(z1, f(a, z1))) -> c4(F(f(a, f(z1, a)), f(a, z0)), F(a, f(z1, a)), F(a, z0)) F(z0, f(z0, z1)) -> c5 K tuples:none Defined Rule Symbols: f_2, encArg_1, encode_f_2, encode_a Defined Pair Symbols: ENCARG_1, F_2, ENCODE_F_2 Compound Symbols: c1_3, c4_3, c5, c_1 ---------------------------------------- (15) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_a -> a ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) f(z0, f(z1, f(a, z1))) -> f(f(a, f(z1, a)), f(a, z0)) f(z0, f(z0, z1)) -> f(f(f(z0, a), a), a) Tuples: ENCARG(cons_f(z0, z1)) -> c1(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(z0, f(z1, f(a, z1))) -> c4(F(f(a, f(z1, a)), f(a, z0)), F(a, f(z1, a)), F(a, z0)) F(z0, f(z0, z1)) -> c5 ENCODE_F(z0, z1) -> c(F(encArg(z0), encArg(z1))) S tuples: F(z0, f(z1, f(a, z1))) -> c4(F(f(a, f(z1, a)), f(a, z0)), F(a, f(z1, a)), F(a, z0)) F(z0, f(z0, z1)) -> c5 K tuples:none Defined Rule Symbols: encArg_1, f_2 Defined Pair Symbols: ENCARG_1, F_2, ENCODE_F_2 Compound Symbols: c1_3, c4_3, c5, c_1 ---------------------------------------- (17) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCARG(cons_f(z0, z1)) -> c1(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) by ENCARG(cons_f(x0, a)) -> c1(F(encArg(x0), a), ENCARG(x0), ENCARG(a)) ENCARG(cons_f(x0, cons_f(z0, z1))) -> c1(F(encArg(x0), f(encArg(z0), encArg(z1))), ENCARG(x0), ENCARG(cons_f(z0, z1))) ENCARG(cons_f(a, x1)) -> c1(F(a, encArg(x1)), ENCARG(a), ENCARG(x1)) ENCARG(cons_f(cons_f(z0, z1), x1)) -> c1(F(f(encArg(z0), encArg(z1)), encArg(x1)), ENCARG(cons_f(z0, z1)), ENCARG(x1)) ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) f(z0, f(z1, f(a, z1))) -> f(f(a, f(z1, a)), f(a, z0)) f(z0, f(z0, z1)) -> f(f(f(z0, a), a), a) Tuples: F(z0, f(z1, f(a, z1))) -> c4(F(f(a, f(z1, a)), f(a, z0)), F(a, f(z1, a)), F(a, z0)) F(z0, f(z0, z1)) -> c5 ENCODE_F(z0, z1) -> c(F(encArg(z0), encArg(z1))) ENCARG(cons_f(x0, a)) -> c1(F(encArg(x0), a), ENCARG(x0), ENCARG(a)) ENCARG(cons_f(x0, cons_f(z0, z1))) -> c1(F(encArg(x0), f(encArg(z0), encArg(z1))), ENCARG(x0), ENCARG(cons_f(z0, z1))) ENCARG(cons_f(a, x1)) -> c1(F(a, encArg(x1)), ENCARG(a), ENCARG(x1)) ENCARG(cons_f(cons_f(z0, z1), x1)) -> c1(F(f(encArg(z0), encArg(z1)), encArg(x1)), ENCARG(cons_f(z0, z1)), ENCARG(x1)) S tuples: F(z0, f(z1, f(a, z1))) -> c4(F(f(a, f(z1, a)), f(a, z0)), F(a, f(z1, a)), F(a, z0)) F(z0, f(z0, z1)) -> c5 K tuples:none Defined Rule Symbols: encArg_1, f_2 Defined Pair Symbols: F_2, ENCODE_F_2, ENCARG_1 Compound Symbols: c4_3, c5, c_1, c1_3 ---------------------------------------- (19) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 3 trailing tuple parts ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) f(z0, f(z1, f(a, z1))) -> f(f(a, f(z1, a)), f(a, z0)) f(z0, f(z0, z1)) -> f(f(f(z0, a), a), a) Tuples: F(z0, f(z1, f(a, z1))) -> c4(F(f(a, f(z1, a)), f(a, z0)), F(a, f(z1, a)), F(a, z0)) F(z0, f(z0, z1)) -> c5 ENCODE_F(z0, z1) -> c(F(encArg(z0), encArg(z1))) ENCARG(cons_f(x0, cons_f(z0, z1))) -> c1(F(encArg(x0), f(encArg(z0), encArg(z1))), ENCARG(x0), ENCARG(cons_f(z0, z1))) ENCARG(cons_f(cons_f(z0, z1), x1)) -> c1(F(f(encArg(z0), encArg(z1)), encArg(x1)), ENCARG(cons_f(z0, z1)), ENCARG(x1)) ENCARG(cons_f(x0, a)) -> c1(ENCARG(x0)) ENCARG(cons_f(a, x1)) -> c1(F(a, encArg(x1)), ENCARG(x1)) S tuples: F(z0, f(z1, f(a, z1))) -> c4(F(f(a, f(z1, a)), f(a, z0)), F(a, f(z1, a)), F(a, z0)) F(z0, f(z0, z1)) -> c5 K tuples:none Defined Rule Symbols: encArg_1, f_2 Defined Pair Symbols: F_2, ENCODE_F_2, ENCARG_1 Compound Symbols: c4_3, c5, c_1, c1_3, c1_1, c1_2 ---------------------------------------- (21) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace F(z0, f(z1, f(a, z1))) -> c4(F(f(a, f(z1, a)), f(a, z0)), F(a, f(z1, a)), F(a, z0)) by F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c4(F(f(a, f(x1, a)), f(f(a, f(z1, a)), f(a, a))), F(a, f(x1, a)), F(a, f(z1, f(a, z1)))) F(f(a, z1), f(x1, f(a, x1))) -> c4(F(f(a, f(x1, a)), f(f(f(a, a), a), a)), F(a, f(x1, a)), F(a, f(a, z1))) F(x0, f(x1, f(a, x1))) -> c4(F(a, f(x1, a))) ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) f(z0, f(z1, f(a, z1))) -> f(f(a, f(z1, a)), f(a, z0)) f(z0, f(z0, z1)) -> f(f(f(z0, a), a), a) Tuples: F(z0, f(z0, z1)) -> c5 ENCODE_F(z0, z1) -> c(F(encArg(z0), encArg(z1))) ENCARG(cons_f(x0, cons_f(z0, z1))) -> c1(F(encArg(x0), f(encArg(z0), encArg(z1))), ENCARG(x0), ENCARG(cons_f(z0, z1))) ENCARG(cons_f(cons_f(z0, z1), x1)) -> c1(F(f(encArg(z0), encArg(z1)), encArg(x1)), ENCARG(cons_f(z0, z1)), ENCARG(x1)) ENCARG(cons_f(x0, a)) -> c1(ENCARG(x0)) ENCARG(cons_f(a, x1)) -> c1(F(a, encArg(x1)), ENCARG(x1)) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c4(F(f(a, f(x1, a)), f(f(a, f(z1, a)), f(a, a))), F(a, f(x1, a)), F(a, f(z1, f(a, z1)))) F(f(a, z1), f(x1, f(a, x1))) -> c4(F(f(a, f(x1, a)), f(f(f(a, a), a), a)), F(a, f(x1, a)), F(a, f(a, z1))) F(x0, f(x1, f(a, x1))) -> c4(F(a, f(x1, a))) S tuples: F(z0, f(z0, z1)) -> c5 F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c4(F(f(a, f(x1, a)), f(f(a, f(z1, a)), f(a, a))), F(a, f(x1, a)), F(a, f(z1, f(a, z1)))) F(f(a, z1), f(x1, f(a, x1))) -> c4(F(f(a, f(x1, a)), f(f(f(a, a), a), a)), F(a, f(x1, a)), F(a, f(a, z1))) F(x0, f(x1, f(a, x1))) -> c4(F(a, f(x1, a))) K tuples:none Defined Rule Symbols: encArg_1, f_2 Defined Pair Symbols: F_2, ENCODE_F_2, ENCARG_1 Compound Symbols: c5, c_1, c1_3, c1_1, c1_2, c4_3, c4_1 ---------------------------------------- (23) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (24) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) f(z0, f(z1, f(a, z1))) -> f(f(a, f(z1, a)), f(a, z0)) f(z0, f(z0, z1)) -> f(f(f(z0, a), a), a) Tuples: F(z0, f(z0, z1)) -> c5 ENCODE_F(z0, z1) -> c(F(encArg(z0), encArg(z1))) ENCARG(cons_f(x0, cons_f(z0, z1))) -> c1(F(encArg(x0), f(encArg(z0), encArg(z1))), ENCARG(x0), ENCARG(cons_f(z0, z1))) ENCARG(cons_f(cons_f(z0, z1), x1)) -> c1(F(f(encArg(z0), encArg(z1)), encArg(x1)), ENCARG(cons_f(z0, z1)), ENCARG(x1)) ENCARG(cons_f(x0, a)) -> c1(ENCARG(x0)) ENCARG(cons_f(a, x1)) -> c1(F(a, encArg(x1)), ENCARG(x1)) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c4(F(f(a, f(x1, a)), f(f(a, f(z1, a)), f(a, a))), F(a, f(x1, a)), F(a, f(z1, f(a, z1)))) F(x0, f(x1, f(a, x1))) -> c4(F(a, f(x1, a))) F(f(a, z1), f(x1, f(a, x1))) -> c4(F(a, f(x1, a)), F(a, f(a, z1))) S tuples: F(z0, f(z0, z1)) -> c5 F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c4(F(f(a, f(x1, a)), f(f(a, f(z1, a)), f(a, a))), F(a, f(x1, a)), F(a, f(z1, f(a, z1)))) F(x0, f(x1, f(a, x1))) -> c4(F(a, f(x1, a))) F(f(a, z1), f(x1, f(a, x1))) -> c4(F(a, f(x1, a)), F(a, f(a, z1))) K tuples:none Defined Rule Symbols: encArg_1, f_2 Defined Pair Symbols: F_2, ENCODE_F_2, ENCARG_1 Compound Symbols: c5, c_1, c1_3, c1_1, c1_2, c4_3, c4_1, c4_2 ---------------------------------------- (25) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (26) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) f(z0, f(z1, f(a, z1))) -> f(f(a, f(z1, a)), f(a, z0)) f(z0, f(z0, z1)) -> f(f(f(z0, a), a), a) Tuples: F(z0, f(z0, z1)) -> c5 ENCODE_F(z0, z1) -> c(F(encArg(z0), encArg(z1))) ENCARG(cons_f(x0, cons_f(z0, z1))) -> c1(F(encArg(x0), f(encArg(z0), encArg(z1))), ENCARG(x0), ENCARG(cons_f(z0, z1))) ENCARG(cons_f(cons_f(z0, z1), x1)) -> c1(F(f(encArg(z0), encArg(z1)), encArg(x1)), ENCARG(cons_f(z0, z1)), ENCARG(x1)) ENCARG(cons_f(x0, a)) -> c1(ENCARG(x0)) ENCARG(cons_f(a, x1)) -> c1(F(a, encArg(x1)), ENCARG(x1)) F(x0, f(x1, f(a, x1))) -> c4(F(a, f(x1, a))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(f(a, f(x1, a)), f(f(a, f(z1, a)), f(a, a)))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(x1, a))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(z1, f(a, z1)))) F(f(a, z1), f(x1, f(a, x1))) -> c2(F(a, f(x1, a))) F(f(a, z1), f(x1, f(a, x1))) -> c2(F(a, f(a, z1))) S tuples: F(z0, f(z0, z1)) -> c5 F(x0, f(x1, f(a, x1))) -> c4(F(a, f(x1, a))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(f(a, f(x1, a)), f(f(a, f(z1, a)), f(a, a)))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(x1, a))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(z1, f(a, z1)))) F(f(a, z1), f(x1, f(a, x1))) -> c2(F(a, f(x1, a))) F(f(a, z1), f(x1, f(a, x1))) -> c2(F(a, f(a, z1))) K tuples:none Defined Rule Symbols: encArg_1, f_2 Defined Pair Symbols: F_2, ENCODE_F_2, ENCARG_1 Compound Symbols: c5, c_1, c1_3, c1_1, c1_2, c4_1, c2_1 ---------------------------------------- (27) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(z0, f(z0, z1)) -> c5 We considered the (Usable) Rules:none And the Tuples: F(z0, f(z0, z1)) -> c5 ENCODE_F(z0, z1) -> c(F(encArg(z0), encArg(z1))) ENCARG(cons_f(x0, cons_f(z0, z1))) -> c1(F(encArg(x0), f(encArg(z0), encArg(z1))), ENCARG(x0), ENCARG(cons_f(z0, z1))) ENCARG(cons_f(cons_f(z0, z1), x1)) -> c1(F(f(encArg(z0), encArg(z1)), encArg(x1)), ENCARG(cons_f(z0, z1)), ENCARG(x1)) ENCARG(cons_f(x0, a)) -> c1(ENCARG(x0)) ENCARG(cons_f(a, x1)) -> c1(F(a, encArg(x1)), ENCARG(x1)) F(x0, f(x1, f(a, x1))) -> c4(F(a, f(x1, a))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(f(a, f(x1, a)), f(f(a, f(z1, a)), f(a, a)))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(x1, a))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(z1, f(a, z1)))) F(f(a, z1), f(x1, f(a, x1))) -> c2(F(a, f(x1, a))) F(f(a, z1), f(x1, f(a, x1))) -> c2(F(a, f(a, z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(ENCARG(x_1)) = x_1 POL(ENCODE_F(x_1, x_2)) = [1] POL(F(x_1, x_2)) = [1] POL(a) = 0 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c1(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c2(x_1)) = x_1 POL(c4(x_1)) = x_1 POL(c5) = 0 POL(cons_f(x_1, x_2)) = [1] + x_1 + x_2 POL(encArg(x_1)) = x_1 POL(f(x_1, x_2)) = 0 ---------------------------------------- (28) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) f(z0, f(z1, f(a, z1))) -> f(f(a, f(z1, a)), f(a, z0)) f(z0, f(z0, z1)) -> f(f(f(z0, a), a), a) Tuples: F(z0, f(z0, z1)) -> c5 ENCODE_F(z0, z1) -> c(F(encArg(z0), encArg(z1))) ENCARG(cons_f(x0, cons_f(z0, z1))) -> c1(F(encArg(x0), f(encArg(z0), encArg(z1))), ENCARG(x0), ENCARG(cons_f(z0, z1))) ENCARG(cons_f(cons_f(z0, z1), x1)) -> c1(F(f(encArg(z0), encArg(z1)), encArg(x1)), ENCARG(cons_f(z0, z1)), ENCARG(x1)) ENCARG(cons_f(x0, a)) -> c1(ENCARG(x0)) ENCARG(cons_f(a, x1)) -> c1(F(a, encArg(x1)), ENCARG(x1)) F(x0, f(x1, f(a, x1))) -> c4(F(a, f(x1, a))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(f(a, f(x1, a)), f(f(a, f(z1, a)), f(a, a)))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(x1, a))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(z1, f(a, z1)))) F(f(a, z1), f(x1, f(a, x1))) -> c2(F(a, f(x1, a))) F(f(a, z1), f(x1, f(a, x1))) -> c2(F(a, f(a, z1))) S tuples: F(x0, f(x1, f(a, x1))) -> c4(F(a, f(x1, a))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(f(a, f(x1, a)), f(f(a, f(z1, a)), f(a, a)))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(x1, a))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(z1, f(a, z1)))) F(f(a, z1), f(x1, f(a, x1))) -> c2(F(a, f(x1, a))) F(f(a, z1), f(x1, f(a, x1))) -> c2(F(a, f(a, z1))) K tuples: F(z0, f(z0, z1)) -> c5 Defined Rule Symbols: encArg_1, f_2 Defined Pair Symbols: F_2, ENCODE_F_2, ENCARG_1 Compound Symbols: c5, c_1, c1_3, c1_1, c1_2, c4_1, c2_1 ---------------------------------------- (29) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(x1, a))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(z1, f(a, z1)))) F(f(a, z1), f(x1, f(a, x1))) -> c2(F(a, f(x1, a))) F(f(a, z1), f(x1, f(a, x1))) -> c2(F(a, f(a, z1))) We considered the (Usable) Rules: f(z0, f(z0, z1)) -> f(f(f(z0, a), a), a) f(z0, f(z1, f(a, z1))) -> f(f(a, f(z1, a)), f(a, z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) And the Tuples: F(z0, f(z0, z1)) -> c5 ENCODE_F(z0, z1) -> c(F(encArg(z0), encArg(z1))) ENCARG(cons_f(x0, cons_f(z0, z1))) -> c1(F(encArg(x0), f(encArg(z0), encArg(z1))), ENCARG(x0), ENCARG(cons_f(z0, z1))) ENCARG(cons_f(cons_f(z0, z1), x1)) -> c1(F(f(encArg(z0), encArg(z1)), encArg(x1)), ENCARG(cons_f(z0, z1)), ENCARG(x1)) ENCARG(cons_f(x0, a)) -> c1(ENCARG(x0)) ENCARG(cons_f(a, x1)) -> c1(F(a, encArg(x1)), ENCARG(x1)) F(x0, f(x1, f(a, x1))) -> c4(F(a, f(x1, a))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(f(a, f(x1, a)), f(f(a, f(z1, a)), f(a, a)))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(x1, a))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(z1, f(a, z1)))) F(f(a, z1), f(x1, f(a, x1))) -> c2(F(a, f(x1, a))) F(f(a, z1), f(x1, f(a, x1))) -> c2(F(a, f(a, z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(ENCARG(x_1)) = x_1 POL(ENCODE_F(x_1, x_2)) = [1] POL(F(x_1, x_2)) = x_1 POL(a) = 0 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c1(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c2(x_1)) = x_1 POL(c4(x_1)) = x_1 POL(c5) = 0 POL(cons_f(x_1, x_2)) = [1] + x_1 + x_2 POL(encArg(x_1)) = [1] POL(f(x_1, x_2)) = [1] ---------------------------------------- (30) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) f(z0, f(z1, f(a, z1))) -> f(f(a, f(z1, a)), f(a, z0)) f(z0, f(z0, z1)) -> f(f(f(z0, a), a), a) Tuples: F(z0, f(z0, z1)) -> c5 ENCODE_F(z0, z1) -> c(F(encArg(z0), encArg(z1))) ENCARG(cons_f(x0, cons_f(z0, z1))) -> c1(F(encArg(x0), f(encArg(z0), encArg(z1))), ENCARG(x0), ENCARG(cons_f(z0, z1))) ENCARG(cons_f(cons_f(z0, z1), x1)) -> c1(F(f(encArg(z0), encArg(z1)), encArg(x1)), ENCARG(cons_f(z0, z1)), ENCARG(x1)) ENCARG(cons_f(x0, a)) -> c1(ENCARG(x0)) ENCARG(cons_f(a, x1)) -> c1(F(a, encArg(x1)), ENCARG(x1)) F(x0, f(x1, f(a, x1))) -> c4(F(a, f(x1, a))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(f(a, f(x1, a)), f(f(a, f(z1, a)), f(a, a)))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(x1, a))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(z1, f(a, z1)))) F(f(a, z1), f(x1, f(a, x1))) -> c2(F(a, f(x1, a))) F(f(a, z1), f(x1, f(a, x1))) -> c2(F(a, f(a, z1))) S tuples: F(x0, f(x1, f(a, x1))) -> c4(F(a, f(x1, a))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(f(a, f(x1, a)), f(f(a, f(z1, a)), f(a, a)))) K tuples: F(z0, f(z0, z1)) -> c5 F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(x1, a))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(z1, f(a, z1)))) F(f(a, z1), f(x1, f(a, x1))) -> c2(F(a, f(x1, a))) F(f(a, z1), f(x1, f(a, x1))) -> c2(F(a, f(a, z1))) Defined Rule Symbols: encArg_1, f_2 Defined Pair Symbols: F_2, ENCODE_F_2, ENCARG_1 Compound Symbols: c5, c_1, c1_3, c1_1, c1_2, c4_1, c2_1 ---------------------------------------- (31) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCODE_F(z0, z1) -> c(F(encArg(z0), encArg(z1))) by ENCODE_F(x0, a) -> c(F(encArg(x0), a)) ENCODE_F(x0, cons_f(z0, z1)) -> c(F(encArg(x0), f(encArg(z0), encArg(z1)))) ENCODE_F(a, x1) -> c(F(a, encArg(x1))) ENCODE_F(cons_f(z0, z1), x1) -> c(F(f(encArg(z0), encArg(z1)), encArg(x1))) ---------------------------------------- (32) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) f(z0, f(z1, f(a, z1))) -> f(f(a, f(z1, a)), f(a, z0)) f(z0, f(z0, z1)) -> f(f(f(z0, a), a), a) Tuples: F(z0, f(z0, z1)) -> c5 ENCARG(cons_f(x0, cons_f(z0, z1))) -> c1(F(encArg(x0), f(encArg(z0), encArg(z1))), ENCARG(x0), ENCARG(cons_f(z0, z1))) ENCARG(cons_f(cons_f(z0, z1), x1)) -> c1(F(f(encArg(z0), encArg(z1)), encArg(x1)), ENCARG(cons_f(z0, z1)), ENCARG(x1)) ENCARG(cons_f(x0, a)) -> c1(ENCARG(x0)) ENCARG(cons_f(a, x1)) -> c1(F(a, encArg(x1)), ENCARG(x1)) F(x0, f(x1, f(a, x1))) -> c4(F(a, f(x1, a))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(f(a, f(x1, a)), f(f(a, f(z1, a)), f(a, a)))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(x1, a))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(z1, f(a, z1)))) F(f(a, z1), f(x1, f(a, x1))) -> c2(F(a, f(x1, a))) F(f(a, z1), f(x1, f(a, x1))) -> c2(F(a, f(a, z1))) ENCODE_F(x0, a) -> c(F(encArg(x0), a)) ENCODE_F(x0, cons_f(z0, z1)) -> c(F(encArg(x0), f(encArg(z0), encArg(z1)))) ENCODE_F(a, x1) -> c(F(a, encArg(x1))) ENCODE_F(cons_f(z0, z1), x1) -> c(F(f(encArg(z0), encArg(z1)), encArg(x1))) S tuples: F(x0, f(x1, f(a, x1))) -> c4(F(a, f(x1, a))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(f(a, f(x1, a)), f(f(a, f(z1, a)), f(a, a)))) K tuples: F(z0, f(z0, z1)) -> c5 F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(x1, a))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(z1, f(a, z1)))) F(f(a, z1), f(x1, f(a, x1))) -> c2(F(a, f(x1, a))) F(f(a, z1), f(x1, f(a, x1))) -> c2(F(a, f(a, z1))) Defined Rule Symbols: encArg_1, f_2 Defined Pair Symbols: F_2, ENCARG_1, ENCODE_F_2 Compound Symbols: c5, c1_3, c1_1, c1_2, c4_1, c2_1, c_1 ---------------------------------------- (33) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 5 trailing nodes: F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(x1, a))) F(z0, f(z0, z1)) -> c5 F(f(a, z1), f(x1, f(a, x1))) -> c2(F(a, f(a, z1))) ENCODE_F(x0, a) -> c(F(encArg(x0), a)) F(f(a, z1), f(x1, f(a, x1))) -> c2(F(a, f(x1, a))) ---------------------------------------- (34) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) f(z0, f(z1, f(a, z1))) -> f(f(a, f(z1, a)), f(a, z0)) f(z0, f(z0, z1)) -> f(f(f(z0, a), a), a) Tuples: ENCARG(cons_f(x0, cons_f(z0, z1))) -> c1(F(encArg(x0), f(encArg(z0), encArg(z1))), ENCARG(x0), ENCARG(cons_f(z0, z1))) ENCARG(cons_f(cons_f(z0, z1), x1)) -> c1(F(f(encArg(z0), encArg(z1)), encArg(x1)), ENCARG(cons_f(z0, z1)), ENCARG(x1)) ENCARG(cons_f(x0, a)) -> c1(ENCARG(x0)) ENCARG(cons_f(a, x1)) -> c1(F(a, encArg(x1)), ENCARG(x1)) F(x0, f(x1, f(a, x1))) -> c4(F(a, f(x1, a))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(f(a, f(x1, a)), f(f(a, f(z1, a)), f(a, a)))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(z1, f(a, z1)))) ENCODE_F(x0, cons_f(z0, z1)) -> c(F(encArg(x0), f(encArg(z0), encArg(z1)))) ENCODE_F(a, x1) -> c(F(a, encArg(x1))) ENCODE_F(cons_f(z0, z1), x1) -> c(F(f(encArg(z0), encArg(z1)), encArg(x1))) S tuples: F(x0, f(x1, f(a, x1))) -> c4(F(a, f(x1, a))) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(f(a, f(x1, a)), f(f(a, f(z1, a)), f(a, a)))) K tuples: F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(z1, f(a, z1)))) Defined Rule Symbols: encArg_1, f_2 Defined Pair Symbols: ENCARG_1, F_2, ENCODE_F_2 Compound Symbols: c1_3, c1_1, c1_2, c4_1, c2_1, c_1 ---------------------------------------- (35) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing tuple parts ---------------------------------------- (36) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) f(z0, f(z1, f(a, z1))) -> f(f(a, f(z1, a)), f(a, z0)) f(z0, f(z0, z1)) -> f(f(f(z0, a), a), a) Tuples: ENCARG(cons_f(x0, cons_f(z0, z1))) -> c1(F(encArg(x0), f(encArg(z0), encArg(z1))), ENCARG(x0), ENCARG(cons_f(z0, z1))) ENCARG(cons_f(cons_f(z0, z1), x1)) -> c1(F(f(encArg(z0), encArg(z1)), encArg(x1)), ENCARG(cons_f(z0, z1)), ENCARG(x1)) ENCARG(cons_f(x0, a)) -> c1(ENCARG(x0)) ENCARG(cons_f(a, x1)) -> c1(F(a, encArg(x1)), ENCARG(x1)) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(z1, f(a, z1)))) ENCODE_F(x0, cons_f(z0, z1)) -> c(F(encArg(x0), f(encArg(z0), encArg(z1)))) ENCODE_F(a, x1) -> c(F(a, encArg(x1))) ENCODE_F(cons_f(z0, z1), x1) -> c(F(f(encArg(z0), encArg(z1)), encArg(x1))) F(x0, f(x1, f(a, x1))) -> c4 F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2 S tuples: F(x0, f(x1, f(a, x1))) -> c4 F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2 K tuples: F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(z1, f(a, z1)))) Defined Rule Symbols: encArg_1, f_2 Defined Pair Symbols: ENCARG_1, F_2, ENCODE_F_2 Compound Symbols: c1_3, c1_1, c1_2, c2_1, c_1, c4, c2 ---------------------------------------- (37) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(x0, f(x1, f(a, x1))) -> c4 F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2 We considered the (Usable) Rules:none And the Tuples: ENCARG(cons_f(x0, cons_f(z0, z1))) -> c1(F(encArg(x0), f(encArg(z0), encArg(z1))), ENCARG(x0), ENCARG(cons_f(z0, z1))) ENCARG(cons_f(cons_f(z0, z1), x1)) -> c1(F(f(encArg(z0), encArg(z1)), encArg(x1)), ENCARG(cons_f(z0, z1)), ENCARG(x1)) ENCARG(cons_f(x0, a)) -> c1(ENCARG(x0)) ENCARG(cons_f(a, x1)) -> c1(F(a, encArg(x1)), ENCARG(x1)) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(z1, f(a, z1)))) ENCODE_F(x0, cons_f(z0, z1)) -> c(F(encArg(x0), f(encArg(z0), encArg(z1)))) ENCODE_F(a, x1) -> c(F(a, encArg(x1))) ENCODE_F(cons_f(z0, z1), x1) -> c(F(f(encArg(z0), encArg(z1)), encArg(x1))) F(x0, f(x1, f(a, x1))) -> c4 F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2 The order we found is given by the following interpretation: Polynomial interpretation : POL(ENCARG(x_1)) = x_1 POL(ENCODE_F(x_1, x_2)) = [1] + x_1 + x_2 POL(F(x_1, x_2)) = [1] POL(a) = 0 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c1(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c2) = 0 POL(c2(x_1)) = x_1 POL(c4) = 0 POL(cons_f(x_1, x_2)) = [1] + x_1 + x_2 POL(encArg(x_1)) = x_1 POL(f(x_1, x_2)) = 0 ---------------------------------------- (38) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) f(z0, f(z1, f(a, z1))) -> f(f(a, f(z1, a)), f(a, z0)) f(z0, f(z0, z1)) -> f(f(f(z0, a), a), a) Tuples: ENCARG(cons_f(x0, cons_f(z0, z1))) -> c1(F(encArg(x0), f(encArg(z0), encArg(z1))), ENCARG(x0), ENCARG(cons_f(z0, z1))) ENCARG(cons_f(cons_f(z0, z1), x1)) -> c1(F(f(encArg(z0), encArg(z1)), encArg(x1)), ENCARG(cons_f(z0, z1)), ENCARG(x1)) ENCARG(cons_f(x0, a)) -> c1(ENCARG(x0)) ENCARG(cons_f(a, x1)) -> c1(F(a, encArg(x1)), ENCARG(x1)) F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(z1, f(a, z1)))) ENCODE_F(x0, cons_f(z0, z1)) -> c(F(encArg(x0), f(encArg(z0), encArg(z1)))) ENCODE_F(a, x1) -> c(F(a, encArg(x1))) ENCODE_F(cons_f(z0, z1), x1) -> c(F(f(encArg(z0), encArg(z1)), encArg(x1))) F(x0, f(x1, f(a, x1))) -> c4 F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2 S tuples:none K tuples: F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2(F(a, f(z1, f(a, z1)))) F(x0, f(x1, f(a, x1))) -> c4 F(f(z1, f(a, z1)), f(x1, f(a, x1))) -> c2 Defined Rule Symbols: encArg_1, f_2 Defined Pair Symbols: ENCARG_1, F_2, ENCODE_F_2 Compound Symbols: c1_3, c1_1, c1_2, c2_1, c_1, c4, c2 ---------------------------------------- (39) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (40) BOUNDS(1, 1)