/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 46 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 2 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (12) CdtProblem (13) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 103 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 24 ms] (18) CdtProblem (19) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (20) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: b(b(x1)) -> c(c(c(c(x1)))) c(x1) -> x1 b(c(b(x1))) -> b(b(b(x1))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(cons_b(x_1)) -> b(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: b(b(x1)) -> c(c(c(c(x1)))) c(x1) -> x1 b(c(b(x1))) -> b(b(b(x1))) The (relative) TRS S consists of the following rules: encArg(cons_b(x_1)) -> b(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: b(b(x1)) -> c(c(c(c(x1)))) c(x1) -> x1 b(c(b(x1))) -> b(b(b(x1))) The (relative) TRS S consists of the following rules: encArg(cons_b(x_1)) -> b(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_b(z0)) -> b(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) b(b(z0)) -> c(c(c(c(z0)))) b(c(b(z0))) -> b(b(b(z0))) c(z0) -> z0 Tuples: ENCARG(cons_b(z0)) -> c1(B(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c2(C(encArg(z0)), ENCARG(z0)) ENCODE_B(z0) -> c3(B(encArg(z0)), ENCARG(z0)) ENCODE_C(z0) -> c4(C(encArg(z0)), ENCARG(z0)) B(b(z0)) -> c5(C(c(c(c(z0)))), C(c(c(z0))), C(c(z0)), C(z0)) B(c(b(z0))) -> c6(B(b(b(z0))), B(b(z0)), B(z0)) C(z0) -> c7 S tuples: B(b(z0)) -> c5(C(c(c(c(z0)))), C(c(c(z0))), C(c(z0)), C(z0)) B(c(b(z0))) -> c6(B(b(b(z0))), B(b(z0)), B(z0)) C(z0) -> c7 K tuples:none Defined Rule Symbols: b_1, c_1, encArg_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, ENCODE_B_1, ENCODE_C_1, B_1, C_1 Compound Symbols: c1_2, c2_2, c3_2, c4_2, c5_4, c6_3, c7 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: B(c(b(z0))) -> c6(B(b(b(z0))), B(b(z0)), B(z0)) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_b(z0)) -> b(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) b(b(z0)) -> c(c(c(c(z0)))) b(c(b(z0))) -> b(b(b(z0))) c(z0) -> z0 Tuples: ENCARG(cons_b(z0)) -> c1(B(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c2(C(encArg(z0)), ENCARG(z0)) ENCODE_B(z0) -> c3(B(encArg(z0)), ENCARG(z0)) ENCODE_C(z0) -> c4(C(encArg(z0)), ENCARG(z0)) B(b(z0)) -> c5(C(c(c(c(z0)))), C(c(c(z0))), C(c(z0)), C(z0)) C(z0) -> c7 S tuples: B(b(z0)) -> c5(C(c(c(c(z0)))), C(c(c(z0))), C(c(z0)), C(z0)) C(z0) -> c7 K tuples:none Defined Rule Symbols: b_1, c_1, encArg_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, ENCODE_B_1, ENCODE_C_1, B_1, C_1 Compound Symbols: c1_2, c2_2, c3_2, c4_2, c5_4, c7 ---------------------------------------- (9) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_b(z0)) -> b(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) b(b(z0)) -> c(c(c(c(z0)))) b(c(b(z0))) -> b(b(b(z0))) c(z0) -> z0 Tuples: ENCARG(cons_b(z0)) -> c1(B(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c2(C(encArg(z0)), ENCARG(z0)) C(z0) -> c7 ENCODE_B(z0) -> c6(B(encArg(z0))) ENCODE_B(z0) -> c6(ENCARG(z0)) ENCODE_C(z0) -> c6(C(encArg(z0))) ENCODE_C(z0) -> c6(ENCARG(z0)) B(b(z0)) -> c6(C(c(c(c(z0))))) B(b(z0)) -> c6(C(c(c(z0)))) B(b(z0)) -> c6(C(c(z0))) B(b(z0)) -> c6(C(z0)) S tuples: C(z0) -> c7 B(b(z0)) -> c6(C(c(c(c(z0))))) B(b(z0)) -> c6(C(c(c(z0)))) B(b(z0)) -> c6(C(c(z0))) B(b(z0)) -> c6(C(z0)) K tuples:none Defined Rule Symbols: b_1, c_1, encArg_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, C_1, ENCODE_B_1, ENCODE_C_1, B_1 Compound Symbols: c1_2, c2_2, c7, c6_1 ---------------------------------------- (11) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_B(z0) -> c6(ENCARG(z0)) ENCODE_C(z0) -> c6(ENCARG(z0)) ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_b(z0)) -> b(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) b(b(z0)) -> c(c(c(c(z0)))) b(c(b(z0))) -> b(b(b(z0))) c(z0) -> z0 Tuples: ENCARG(cons_b(z0)) -> c1(B(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c2(C(encArg(z0)), ENCARG(z0)) C(z0) -> c7 ENCODE_B(z0) -> c6(B(encArg(z0))) ENCODE_C(z0) -> c6(C(encArg(z0))) B(b(z0)) -> c6(C(c(c(c(z0))))) B(b(z0)) -> c6(C(c(c(z0)))) B(b(z0)) -> c6(C(c(z0))) B(b(z0)) -> c6(C(z0)) S tuples: C(z0) -> c7 B(b(z0)) -> c6(C(c(c(c(z0))))) B(b(z0)) -> c6(C(c(c(z0)))) B(b(z0)) -> c6(C(c(z0))) B(b(z0)) -> c6(C(z0)) K tuples:none Defined Rule Symbols: b_1, c_1, encArg_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, C_1, ENCODE_B_1, ENCODE_C_1, B_1 Compound Symbols: c1_2, c2_2, c7, c6_1 ---------------------------------------- (13) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) b(c(b(z0))) -> b(b(b(z0))) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_b(z0)) -> b(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) b(b(z0)) -> c(c(c(c(z0)))) c(z0) -> z0 Tuples: ENCARG(cons_b(z0)) -> c1(B(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c2(C(encArg(z0)), ENCARG(z0)) C(z0) -> c7 ENCODE_B(z0) -> c6(B(encArg(z0))) ENCODE_C(z0) -> c6(C(encArg(z0))) B(b(z0)) -> c6(C(c(c(c(z0))))) B(b(z0)) -> c6(C(c(c(z0)))) B(b(z0)) -> c6(C(c(z0))) B(b(z0)) -> c6(C(z0)) S tuples: C(z0) -> c7 B(b(z0)) -> c6(C(c(c(c(z0))))) B(b(z0)) -> c6(C(c(c(z0)))) B(b(z0)) -> c6(C(c(z0))) B(b(z0)) -> c6(C(z0)) K tuples:none Defined Rule Symbols: encArg_1, b_1, c_1 Defined Pair Symbols: ENCARG_1, C_1, ENCODE_B_1, ENCODE_C_1, B_1 Compound Symbols: c1_2, c2_2, c7, c6_1 ---------------------------------------- (15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. B(b(z0)) -> c6(C(c(c(c(z0))))) B(b(z0)) -> c6(C(c(c(z0)))) B(b(z0)) -> c6(C(c(z0))) B(b(z0)) -> c6(C(z0)) We considered the (Usable) Rules:none And the Tuples: ENCARG(cons_b(z0)) -> c1(B(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c2(C(encArg(z0)), ENCARG(z0)) C(z0) -> c7 ENCODE_B(z0) -> c6(B(encArg(z0))) ENCODE_C(z0) -> c6(C(encArg(z0))) B(b(z0)) -> c6(C(c(c(c(z0))))) B(b(z0)) -> c6(C(c(c(z0)))) B(b(z0)) -> c6(C(c(z0))) B(b(z0)) -> c6(C(z0)) The order we found is given by the following interpretation: Polynomial interpretation : POL(B(x_1)) = [2] POL(C(x_1)) = 0 POL(ENCARG(x_1)) = x_1 POL(ENCODE_B(x_1)) = [3] + x_1 POL(ENCODE_C(x_1)) = x_1 POL(b(x_1)) = x_1 POL(c(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c6(x_1)) = x_1 POL(c7) = 0 POL(cons_b(x_1)) = [3] + x_1 POL(cons_c(x_1)) = x_1 POL(encArg(x_1)) = [3]x_1 ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_b(z0)) -> b(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) b(b(z0)) -> c(c(c(c(z0)))) c(z0) -> z0 Tuples: ENCARG(cons_b(z0)) -> c1(B(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c2(C(encArg(z0)), ENCARG(z0)) C(z0) -> c7 ENCODE_B(z0) -> c6(B(encArg(z0))) ENCODE_C(z0) -> c6(C(encArg(z0))) B(b(z0)) -> c6(C(c(c(c(z0))))) B(b(z0)) -> c6(C(c(c(z0)))) B(b(z0)) -> c6(C(c(z0))) B(b(z0)) -> c6(C(z0)) S tuples: C(z0) -> c7 K tuples: B(b(z0)) -> c6(C(c(c(c(z0))))) B(b(z0)) -> c6(C(c(c(z0)))) B(b(z0)) -> c6(C(c(z0))) B(b(z0)) -> c6(C(z0)) Defined Rule Symbols: encArg_1, b_1, c_1 Defined Pair Symbols: ENCARG_1, C_1, ENCODE_B_1, ENCODE_C_1, B_1 Compound Symbols: c1_2, c2_2, c7, c6_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. C(z0) -> c7 We considered the (Usable) Rules:none And the Tuples: ENCARG(cons_b(z0)) -> c1(B(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c2(C(encArg(z0)), ENCARG(z0)) C(z0) -> c7 ENCODE_B(z0) -> c6(B(encArg(z0))) ENCODE_C(z0) -> c6(C(encArg(z0))) B(b(z0)) -> c6(C(c(c(c(z0))))) B(b(z0)) -> c6(C(c(c(z0)))) B(b(z0)) -> c6(C(c(z0))) B(b(z0)) -> c6(C(z0)) The order we found is given by the following interpretation: Polynomial interpretation : POL(B(x_1)) = [1] POL(C(x_1)) = [1] POL(ENCARG(x_1)) = x_1 POL(ENCODE_B(x_1)) = [1] POL(ENCODE_C(x_1)) = [1] + x_1 POL(b(x_1)) = [1] + x_1 POL(c(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c6(x_1)) = x_1 POL(c7) = 0 POL(cons_b(x_1)) = [1] + x_1 POL(cons_c(x_1)) = [1] + x_1 POL(encArg(x_1)) = [1] + x_1 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_b(z0)) -> b(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) b(b(z0)) -> c(c(c(c(z0)))) c(z0) -> z0 Tuples: ENCARG(cons_b(z0)) -> c1(B(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c2(C(encArg(z0)), ENCARG(z0)) C(z0) -> c7 ENCODE_B(z0) -> c6(B(encArg(z0))) ENCODE_C(z0) -> c6(C(encArg(z0))) B(b(z0)) -> c6(C(c(c(c(z0))))) B(b(z0)) -> c6(C(c(c(z0)))) B(b(z0)) -> c6(C(c(z0))) B(b(z0)) -> c6(C(z0)) S tuples:none K tuples: B(b(z0)) -> c6(C(c(c(c(z0))))) B(b(z0)) -> c6(C(c(c(z0)))) B(b(z0)) -> c6(C(c(z0))) B(b(z0)) -> c6(C(z0)) C(z0) -> c7 Defined Rule Symbols: encArg_1, b_1, c_1 Defined Pair Symbols: ENCARG_1, C_1, ENCODE_B_1, ENCODE_C_1, B_1 Compound Symbols: c1_2, c2_2, c7, c6_1 ---------------------------------------- (19) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (20) BOUNDS(1, 1)