/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 247 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 5 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: and(tt, tt) -> tt is_nat(0) -> tt is_nat(s(x)) -> is_nat(x) is_natlist(nil) -> tt is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs)) from(x) -> fromCond(is_natlist(x), x) fromCond(tt, cons(x, xs)) -> from(cons(s(x), cons(x, xs))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(tt) -> tt encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_is_nat(x_1)) -> is_nat(encArg(x_1)) encArg(cons_is_natlist(x_1)) -> is_natlist(encArg(x_1)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_fromCond(x_1, x_2)) -> fromCond(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_is_nat(x_1) -> is_nat(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_is_natlist(x_1) -> is_natlist(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_from(x_1) -> from(encArg(x_1)) encode_fromCond(x_1, x_2) -> fromCond(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: and(tt, tt) -> tt is_nat(0) -> tt is_nat(s(x)) -> is_nat(x) is_natlist(nil) -> tt is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs)) from(x) -> fromCond(is_natlist(x), x) fromCond(tt, cons(x, xs)) -> from(cons(s(x), cons(x, xs))) The (relative) TRS S consists of the following rules: encArg(tt) -> tt encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_is_nat(x_1)) -> is_nat(encArg(x_1)) encArg(cons_is_natlist(x_1)) -> is_natlist(encArg(x_1)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_fromCond(x_1, x_2)) -> fromCond(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_is_nat(x_1) -> is_nat(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_is_natlist(x_1) -> is_natlist(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_from(x_1) -> from(encArg(x_1)) encode_fromCond(x_1, x_2) -> fromCond(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: and(tt, tt) -> tt is_nat(0) -> tt is_nat(s(x)) -> is_nat(x) is_natlist(nil) -> tt is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs)) from(x) -> fromCond(is_natlist(x), x) fromCond(tt, cons(x, xs)) -> from(cons(s(x), cons(x, xs))) The (relative) TRS S consists of the following rules: encArg(tt) -> tt encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_is_nat(x_1)) -> is_nat(encArg(x_1)) encArg(cons_is_natlist(x_1)) -> is_natlist(encArg(x_1)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_fromCond(x_1, x_2)) -> fromCond(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_is_nat(x_1) -> is_nat(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_is_natlist(x_1) -> is_natlist(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_from(x_1) -> from(encArg(x_1)) encode_fromCond(x_1, x_2) -> fromCond(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: and(tt, tt) -> tt is_nat(0) -> tt is_nat(s(x)) -> is_nat(x) is_natlist(nil) -> tt is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs)) from(x) -> fromCond(is_natlist(x), x) fromCond(tt, cons(x, xs)) -> from(cons(s(x), cons(x, xs))) The (relative) TRS S consists of the following rules: encArg(tt) -> tt encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_is_nat(x_1)) -> is_nat(encArg(x_1)) encArg(cons_is_natlist(x_1)) -> is_natlist(encArg(x_1)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_fromCond(x_1, x_2)) -> fromCond(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_is_nat(x_1) -> is_nat(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_is_natlist(x_1) -> is_natlist(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_from(x_1) -> from(encArg(x_1)) encode_fromCond(x_1, x_2) -> fromCond(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence is_nat(s(x)) ->^+ is_nat(x) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(x)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: and(tt, tt) -> tt is_nat(0) -> tt is_nat(s(x)) -> is_nat(x) is_natlist(nil) -> tt is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs)) from(x) -> fromCond(is_natlist(x), x) fromCond(tt, cons(x, xs)) -> from(cons(s(x), cons(x, xs))) The (relative) TRS S consists of the following rules: encArg(tt) -> tt encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_is_nat(x_1)) -> is_nat(encArg(x_1)) encArg(cons_is_natlist(x_1)) -> is_natlist(encArg(x_1)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_fromCond(x_1, x_2)) -> fromCond(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_is_nat(x_1) -> is_nat(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_is_natlist(x_1) -> is_natlist(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_from(x_1) -> from(encArg(x_1)) encode_fromCond(x_1, x_2) -> fromCond(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: and(tt, tt) -> tt is_nat(0) -> tt is_nat(s(x)) -> is_nat(x) is_natlist(nil) -> tt is_natlist(cons(x, xs)) -> and(is_nat(x), is_natlist(xs)) from(x) -> fromCond(is_natlist(x), x) fromCond(tt, cons(x, xs)) -> from(cons(s(x), cons(x, xs))) The (relative) TRS S consists of the following rules: encArg(tt) -> tt encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_is_nat(x_1)) -> is_nat(encArg(x_1)) encArg(cons_is_natlist(x_1)) -> is_natlist(encArg(x_1)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_fromCond(x_1, x_2)) -> fromCond(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_is_nat(x_1) -> is_nat(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_is_natlist(x_1) -> is_natlist(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_from(x_1) -> from(encArg(x_1)) encode_fromCond(x_1, x_2) -> fromCond(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST