/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(INF, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 167 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) InfiniteLowerBoundProof [FINISHED, 0 ms] (8) BOUNDS(INF, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: f(tt, x) -> f(isList(x), x) isList(Cons(x, xs)) -> isList(xs) isList(nil) -> tt S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(tt) -> tt encArg(Cons(x_1, x_2)) -> Cons(encArg(x_1), encArg(x_2)) encArg(xs) -> xs encArg(nil) -> nil encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_isList(x_1)) -> isList(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_isList(x_1) -> isList(encArg(x_1)) encode_Cons(x_1, x_2) -> Cons(encArg(x_1), encArg(x_2)) encode_xs -> xs encode_nil -> nil ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: f(tt, x) -> f(isList(x), x) isList(Cons(x, xs)) -> isList(xs) isList(nil) -> tt The (relative) TRS S consists of the following rules: encArg(tt) -> tt encArg(Cons(x_1, x_2)) -> Cons(encArg(x_1), encArg(x_2)) encArg(xs) -> xs encArg(nil) -> nil encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_isList(x_1)) -> isList(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_isList(x_1) -> isList(encArg(x_1)) encode_Cons(x_1, x_2) -> Cons(encArg(x_1), encArg(x_2)) encode_xs -> xs encode_nil -> nil Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: f(tt, x) -> f(isList(x), x) isList(Cons(x, xs)) -> isList(xs) isList(nil) -> tt The (relative) TRS S consists of the following rules: encArg(tt) -> tt encArg(Cons(x_1, x_2)) -> Cons(encArg(x_1), encArg(x_2)) encArg(xs) -> xs encArg(nil) -> nil encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_isList(x_1)) -> isList(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_isList(x_1) -> isList(encArg(x_1)) encode_Cons(x_1, x_2) -> Cons(encArg(x_1), encArg(x_2)) encode_xs -> xs encode_nil -> nil Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: f(tt, x) -> f(isList(x), x) isList(Cons(x, xs)) -> isList(xs) isList(nil) -> tt The (relative) TRS S consists of the following rules: encArg(tt) -> tt encArg(Cons(x_1, x_2)) -> Cons(encArg(x_1), encArg(x_2)) encArg(xs) -> xs encArg(nil) -> nil encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_isList(x_1)) -> isList(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_isList(x_1) -> isList(encArg(x_1)) encode_Cons(x_1, x_2) -> Cons(encArg(x_1), encArg(x_2)) encode_xs -> xs encode_nil -> nil Rewrite Strategy: INNERMOST ---------------------------------------- (7) InfiniteLowerBoundProof (FINISHED) The following loop proves infinite runtime complexity: The rewrite sequence f(tt, nil) ->^+ f(tt, nil) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [ ]. The result substitution is [ ]. ---------------------------------------- (8) BOUNDS(INF, INF)