/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^4)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^4). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 167 ms] (4) CpxRelTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 2158 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 4 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 44 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 14 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 329 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 156 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 116 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 77 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 3 ms] (42) CpxRNTS (43) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 1199 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 414 ms] (48) CpxRNTS (49) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 399 ms] (52) CpxRNTS (53) IntTrsBoundProof [UPPER BOUND(ID), 34 ms] (54) CpxRNTS (55) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (56) CpxRNTS (57) IntTrsBoundProof [UPPER BOUND(ID), 424 ms] (58) CpxRNTS (59) IntTrsBoundProof [UPPER BOUND(ID), 256 ms] (60) CpxRNTS (61) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (62) CpxRNTS (63) IntTrsBoundProof [UPPER BOUND(ID), 249 ms] (64) CpxRNTS (65) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (66) CpxRNTS (67) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (68) CpxRNTS (69) IntTrsBoundProof [UPPER BOUND(ID), 197 ms] (70) CpxRNTS (71) IntTrsBoundProof [UPPER BOUND(ID), 1 ms] (72) CpxRNTS (73) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (74) CpxRNTS (75) IntTrsBoundProof [UPPER BOUND(ID), 187 ms] (76) CpxRNTS (77) IntTrsBoundProof [UPPER BOUND(ID), 2 ms] (78) CpxRNTS (79) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (80) CpxRNTS (81) IntTrsBoundProof [UPPER BOUND(ID), 187 ms] (82) CpxRNTS (83) IntTrsBoundProof [UPPER BOUND(ID), 3 ms] (84) CpxRNTS (85) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (86) CpxRNTS (87) IntTrsBoundProof [UPPER BOUND(ID), 106 ms] (88) CpxRNTS (89) IntTrsBoundProof [UPPER BOUND(ID), 2 ms] (90) CpxRNTS (91) FinalProof [FINISHED, 0 ms] (92) BOUNDS(1, n^4) (93) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (94) CpxRelTRS (95) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (96) typed CpxTrs (97) OrderProof [LOWER BOUND(ID), 0 ms] (98) typed CpxTrs (99) RewriteLemmaProof [LOWER BOUND(ID), 266 ms] (100) BEST (101) proven lower bound (102) LowerBoundPropagationProof [FINISHED, 0 ms] (103) BOUNDS(n^1, INF) (104) typed CpxTrs (105) RewriteLemmaProof [LOWER BOUND(ID), 163 ms] (106) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^4). The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) minus(0, Y) -> 0 minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) ifMinus(true, s(X), Y) -> 0 ifMinus(false, s(X), Y) -> s(minus(X, Y)) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_ifMinus(x_1, x_2, x_3)) -> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_quot(x_1, x_2)) -> quot(encArg(x_1), encArg(x_2)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_ifMinus(x_1, x_2, x_3) -> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) encode_quot(x_1, x_2) -> quot(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^4). The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) minus(0, Y) -> 0 minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) ifMinus(true, s(X), Y) -> 0 ifMinus(false, s(X), Y) -> s(minus(X, Y)) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_ifMinus(x_1, x_2, x_3)) -> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_quot(x_1, x_2)) -> quot(encArg(x_1), encArg(x_2)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_ifMinus(x_1, x_2, x_3) -> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) encode_quot(x_1, x_2) -> quot(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^4). The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) minus(0, Y) -> 0 minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) ifMinus(true, s(X), Y) -> 0 ifMinus(false, s(X), Y) -> s(minus(X, Y)) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_ifMinus(x_1, x_2, x_3)) -> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_quot(x_1, x_2)) -> quot(encArg(x_1), encArg(x_2)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_ifMinus(x_1, x_2, x_3) -> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) encode_quot(x_1, x_2) -> quot(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^4). The TRS R consists of the following rules: le(0, Y) -> true [1] le(s(X), 0) -> false [1] le(s(X), s(Y)) -> le(X, Y) [1] minus(0, Y) -> 0 [1] minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) [1] ifMinus(true, s(X), Y) -> 0 [1] ifMinus(false, s(X), Y) -> s(minus(X, Y)) [1] quot(0, s(Y)) -> 0 [1] quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) [1] encArg(0) -> 0 [0] encArg(true) -> true [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(false) -> false [0] encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) [0] encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) [0] encArg(cons_ifMinus(x_1, x_2, x_3)) -> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_quot(x_1, x_2)) -> quot(encArg(x_1), encArg(x_2)) [0] encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_true -> true [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_false -> false [0] encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) [0] encode_ifMinus(x_1, x_2, x_3) -> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_quot(x_1, x_2) -> quot(encArg(x_1), encArg(x_2)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: le(0, Y) -> true [1] le(s(X), 0) -> false [1] le(s(X), s(Y)) -> le(X, Y) [1] minus(0, Y) -> 0 [1] minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) [1] ifMinus(true, s(X), Y) -> 0 [1] ifMinus(false, s(X), Y) -> s(minus(X, Y)) [1] quot(0, s(Y)) -> 0 [1] quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) [1] encArg(0) -> 0 [0] encArg(true) -> true [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(false) -> false [0] encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) [0] encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) [0] encArg(cons_ifMinus(x_1, x_2, x_3)) -> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_quot(x_1, x_2)) -> quot(encArg(x_1), encArg(x_2)) [0] encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_true -> true [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_false -> false [0] encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) [0] encode_ifMinus(x_1, x_2, x_3) -> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_quot(x_1, x_2) -> quot(encArg(x_1), encArg(x_2)) [0] The TRS has the following type information: le :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot 0 :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot true :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot s :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot false :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot minus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot ifMinus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot quot :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encArg :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot cons_le :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot cons_minus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot cons_ifMinus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot cons_quot :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_le :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_0 :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_true :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_s :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_false :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_minus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_ifMinus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_quot :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: minus_2 le_2 ifMinus_3 quot_2 encArg_1 encode_le_2 encode_0 encode_true encode_s_1 encode_false encode_minus_2 encode_ifMinus_3 encode_quot_2 Due to the following rules being added: encArg(v0) -> null_encArg [0] encode_le(v0, v1) -> null_encode_le [0] encode_0 -> null_encode_0 [0] encode_true -> null_encode_true [0] encode_s(v0) -> null_encode_s [0] encode_false -> null_encode_false [0] encode_minus(v0, v1) -> null_encode_minus [0] encode_ifMinus(v0, v1, v2) -> null_encode_ifMinus [0] encode_quot(v0, v1) -> null_encode_quot [0] minus(v0, v1) -> null_minus [0] le(v0, v1) -> null_le [0] ifMinus(v0, v1, v2) -> null_ifMinus [0] quot(v0, v1) -> null_quot [0] And the following fresh constants: null_encArg, null_encode_le, null_encode_0, null_encode_true, null_encode_s, null_encode_false, null_encode_minus, null_encode_ifMinus, null_encode_quot, null_minus, null_le, null_ifMinus, null_quot ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: le(0, Y) -> true [1] le(s(X), 0) -> false [1] le(s(X), s(Y)) -> le(X, Y) [1] minus(0, Y) -> 0 [1] minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) [1] ifMinus(true, s(X), Y) -> 0 [1] ifMinus(false, s(X), Y) -> s(minus(X, Y)) [1] quot(0, s(Y)) -> 0 [1] quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) [1] encArg(0) -> 0 [0] encArg(true) -> true [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(false) -> false [0] encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) [0] encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) [0] encArg(cons_ifMinus(x_1, x_2, x_3)) -> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_quot(x_1, x_2)) -> quot(encArg(x_1), encArg(x_2)) [0] encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_true -> true [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_false -> false [0] encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) [0] encode_ifMinus(x_1, x_2, x_3) -> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_quot(x_1, x_2) -> quot(encArg(x_1), encArg(x_2)) [0] encArg(v0) -> null_encArg [0] encode_le(v0, v1) -> null_encode_le [0] encode_0 -> null_encode_0 [0] encode_true -> null_encode_true [0] encode_s(v0) -> null_encode_s [0] encode_false -> null_encode_false [0] encode_minus(v0, v1) -> null_encode_minus [0] encode_ifMinus(v0, v1, v2) -> null_encode_ifMinus [0] encode_quot(v0, v1) -> null_encode_quot [0] minus(v0, v1) -> null_minus [0] le(v0, v1) -> null_le [0] ifMinus(v0, v1, v2) -> null_ifMinus [0] quot(v0, v1) -> null_quot [0] The TRS has the following type information: le :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot 0 :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot true :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot s :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot false :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot minus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot ifMinus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot quot :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot encArg :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot cons_le :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot cons_minus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot cons_ifMinus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot cons_quot :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot encode_le :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot encode_0 :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot encode_true :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot encode_s :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot encode_false :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot encode_minus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot encode_ifMinus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot encode_quot :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_encArg :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_encode_le :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_encode_0 :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_encode_true :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_encode_s :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_encode_false :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_encode_minus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_encode_ifMinus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_encode_quot :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_minus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_le :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_ifMinus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_quot :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: le(0, Y) -> true [1] le(s(X), 0) -> false [1] le(s(X), s(Y)) -> le(X, Y) [1] minus(0, Y) -> 0 [1] minus(s(X), 0) -> ifMinus(false, s(X), 0) [2] minus(s(X), s(Y')) -> ifMinus(le(X, Y'), s(X), s(Y')) [2] minus(s(X), Y) -> ifMinus(null_le, s(X), Y) [1] ifMinus(true, s(X), Y) -> 0 [1] ifMinus(false, s(X), Y) -> s(minus(X, Y)) [1] quot(0, s(Y)) -> 0 [1] quot(s(0), s(Y)) -> s(quot(0, s(Y))) [2] quot(s(s(X')), s(Y)) -> s(quot(ifMinus(le(s(X'), Y), s(X'), Y), s(Y))) [2] quot(s(X), s(Y)) -> s(quot(null_minus, s(Y))) [1] encArg(0) -> 0 [0] encArg(true) -> true [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(false) -> false [0] encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) [0] encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) [0] encArg(cons_ifMinus(x_1, x_2, x_3)) -> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_quot(x_1, x_2)) -> quot(encArg(x_1), encArg(x_2)) [0] encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_true -> true [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_false -> false [0] encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) [0] encode_ifMinus(x_1, x_2, x_3) -> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_quot(x_1, x_2) -> quot(encArg(x_1), encArg(x_2)) [0] encArg(v0) -> null_encArg [0] encode_le(v0, v1) -> null_encode_le [0] encode_0 -> null_encode_0 [0] encode_true -> null_encode_true [0] encode_s(v0) -> null_encode_s [0] encode_false -> null_encode_false [0] encode_minus(v0, v1) -> null_encode_minus [0] encode_ifMinus(v0, v1, v2) -> null_encode_ifMinus [0] encode_quot(v0, v1) -> null_encode_quot [0] minus(v0, v1) -> null_minus [0] le(v0, v1) -> null_le [0] ifMinus(v0, v1, v2) -> null_ifMinus [0] quot(v0, v1) -> null_quot [0] The TRS has the following type information: le :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot 0 :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot true :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot s :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot false :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot minus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot ifMinus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot quot :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot encArg :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot cons_le :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot cons_minus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot cons_ifMinus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot cons_quot :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot encode_le :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot encode_0 :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot encode_true :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot encode_s :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot encode_false :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot encode_minus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot encode_ifMinus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot encode_quot :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot -> 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_encArg :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_encode_le :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_encode_0 :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_encode_true :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_encode_s :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_encode_false :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_encode_minus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_encode_ifMinus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_encode_quot :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_minus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_le :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_ifMinus :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot null_quot :: 0:true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot:null_encArg:null_encode_le:null_encode_0:null_encode_true:null_encode_s:null_encode_false:null_encode_minus:null_encode_ifMinus:null_encode_quot:null_minus:null_le:null_ifMinus:null_quot Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 true => 2 false => 1 null_encArg => 0 null_encode_le => 0 null_encode_0 => 0 null_encode_true => 0 null_encode_s => 0 null_encode_false => 0 null_encode_minus => 0 null_encode_ifMinus => 0 null_encode_quot => 0 null_minus => 0 null_le => 0 null_ifMinus => 0 null_quot => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> quot(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 0 }-> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, x_3 >= 0, x_2 >= 0, z = x_1, z' = x_2, z'' = x_3 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 encode_le(z, z') -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_le(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_minus(z, z') -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_minus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_quot(z, z') -{ 0 }-> quot(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_quot(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_s(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_s(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, Y >= 0, z'' = Y, z' = 1 + X, X >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(X, Y) :|: Y >= 0, z = 1, z'' = Y, z' = 1 + X, X >= 0 le(z, z') -{ 1 }-> le(X, Y) :|: z = 1 + X, Y >= 0, z' = 1 + Y, X >= 0 le(z, z') -{ 1 }-> 2 :|: z' = Y, Y >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z = 1 + X, X >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 minus(z, z') -{ 2 }-> ifMinus(le(X, Y'), 1 + X, 1 + Y') :|: z = 1 + X, Y' >= 0, X >= 0, z' = 1 + Y' minus(z, z') -{ 2 }-> ifMinus(1, 1 + X, 0) :|: z = 1 + X, X >= 0, z' = 0 minus(z, z') -{ 1 }-> ifMinus(0, 1 + X, Y) :|: z = 1 + X, z' = Y, Y >= 0, X >= 0 minus(z, z') -{ 1 }-> 0 :|: z' = Y, Y >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 quot(z, z') -{ 1 }-> 0 :|: Y >= 0, z' = 1 + Y, z = 0 quot(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 quot(z, z') -{ 2 }-> 1 + quot(ifMinus(le(1 + X', Y), 1 + X', Y), 1 + Y) :|: Y >= 0, z' = 1 + Y, X' >= 0, z = 1 + (1 + X') quot(z, z') -{ 2 }-> 1 + quot(0, 1 + Y) :|: Y >= 0, z = 1 + 0, z' = 1 + Y quot(z, z') -{ 1 }-> 1 + quot(0, 1 + Y) :|: z = 1 + X, Y >= 0, z' = 1 + Y, X >= 0 ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> quot(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 0 }-> ifMinus(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> quot(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 }-> ifMinus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> ifMinus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> ifMinus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 2 }-> 1 + quot(ifMinus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 1 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { encode_0 } { le } { encode_false } { encode_true } { ifMinus, minus } { quot } { encArg } { encode_ifMinus } { encode_minus } { encode_le } { encode_quot } { encode_s } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> quot(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 0 }-> ifMinus(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> quot(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 }-> ifMinus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> ifMinus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> ifMinus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 2 }-> 1 + quot(ifMinus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 1 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encode_0}, {le}, {encode_false}, {encode_true}, {ifMinus,minus}, {quot}, {encArg}, {encode_ifMinus}, {encode_minus}, {encode_le}, {encode_quot}, {encode_s} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> quot(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 0 }-> ifMinus(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> quot(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 }-> ifMinus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> ifMinus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> ifMinus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 2 }-> 1 + quot(ifMinus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 1 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encode_0}, {le}, {encode_false}, {encode_true}, {ifMinus,minus}, {quot}, {encArg}, {encode_ifMinus}, {encode_minus}, {encode_le}, {encode_quot}, {encode_s} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> quot(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 0 }-> ifMinus(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> quot(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 }-> ifMinus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> ifMinus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> ifMinus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 2 }-> 1 + quot(ifMinus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 1 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encode_0}, {le}, {encode_false}, {encode_true}, {ifMinus,minus}, {quot}, {encArg}, {encode_ifMinus}, {encode_minus}, {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: ?, size: O(1) [0] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> quot(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 0 }-> ifMinus(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> quot(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 }-> ifMinus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> ifMinus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> ifMinus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 2 }-> 1 + quot(ifMinus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 1 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {le}, {encode_false}, {encode_true}, {ifMinus,minus}, {quot}, {encArg}, {encode_ifMinus}, {encode_minus}, {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> quot(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 0 }-> ifMinus(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> quot(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 }-> ifMinus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> ifMinus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> ifMinus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 2 }-> 1 + quot(ifMinus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 1 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {le}, {encode_false}, {encode_true}, {ifMinus,minus}, {quot}, {encArg}, {encode_ifMinus}, {encode_minus}, {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: le after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> quot(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 0 }-> ifMinus(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> quot(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 }-> ifMinus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> ifMinus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> ifMinus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 2 }-> 1 + quot(ifMinus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 1 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {le}, {encode_false}, {encode_true}, {ifMinus,minus}, {quot}, {encArg}, {encode_ifMinus}, {encode_minus}, {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: ?, size: O(1) [2] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: le after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> quot(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 0 }-> ifMinus(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> quot(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 2 }-> ifMinus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> ifMinus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> ifMinus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 2 }-> 1 + quot(ifMinus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 1 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encode_false}, {encode_true}, {ifMinus,minus}, {quot}, {encArg}, {encode_ifMinus}, {encode_minus}, {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> quot(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 0 }-> ifMinus(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> quot(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 3 + z' }-> ifMinus(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> ifMinus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> ifMinus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 + z' }-> 1 + quot(ifMinus(s'', 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 1 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encode_false}, {encode_true}, {ifMinus,minus}, {quot}, {encArg}, {encode_ifMinus}, {encode_minus}, {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_false after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> quot(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 0 }-> ifMinus(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> quot(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 3 + z' }-> ifMinus(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> ifMinus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> ifMinus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 + z' }-> 1 + quot(ifMinus(s'', 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 1 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encode_false}, {encode_true}, {ifMinus,minus}, {quot}, {encArg}, {encode_ifMinus}, {encode_minus}, {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: ?, size: O(1) [1] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_false after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> quot(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 0 }-> ifMinus(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> quot(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 3 + z' }-> ifMinus(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> ifMinus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> ifMinus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 + z' }-> 1 + quot(ifMinus(s'', 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 1 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encode_true}, {ifMinus,minus}, {quot}, {encArg}, {encode_ifMinus}, {encode_minus}, {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> quot(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 0 }-> ifMinus(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> quot(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 3 + z' }-> ifMinus(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> ifMinus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> ifMinus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 + z' }-> 1 + quot(ifMinus(s'', 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 1 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encode_true}, {ifMinus,minus}, {quot}, {encArg}, {encode_ifMinus}, {encode_minus}, {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_true after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> quot(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 0 }-> ifMinus(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> quot(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 3 + z' }-> ifMinus(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> ifMinus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> ifMinus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 + z' }-> 1 + quot(ifMinus(s'', 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 1 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encode_true}, {ifMinus,minus}, {quot}, {encArg}, {encode_ifMinus}, {encode_minus}, {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: ?, size: O(1) [2] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_true after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> quot(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 0 }-> ifMinus(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> quot(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 3 + z' }-> ifMinus(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> ifMinus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> ifMinus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 + z' }-> 1 + quot(ifMinus(s'', 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 1 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {ifMinus,minus}, {quot}, {encArg}, {encode_ifMinus}, {encode_minus}, {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ---------------------------------------- (43) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> quot(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 0 }-> ifMinus(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> quot(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 3 + z' }-> ifMinus(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> ifMinus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> ifMinus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 + z' }-> 1 + quot(ifMinus(s'', 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 1 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {ifMinus,minus}, {quot}, {encArg}, {encode_ifMinus}, {encode_minus}, {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: ifMinus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' Computed SIZE bound using CoFloCo for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> quot(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 0 }-> ifMinus(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> quot(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 3 + z' }-> ifMinus(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> ifMinus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> ifMinus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 + z' }-> 1 + quot(ifMinus(s'', 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 1 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {ifMinus,minus}, {quot}, {encArg}, {encode_ifMinus}, {encode_minus}, {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ifMinus: runtime: ?, size: O(n^1) [z'] minus: runtime: ?, size: O(n^1) [z] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: ifMinus after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 10 + 4*z' + z'*z'' + 2*z'' Computed RUNTIME bound using KoAT for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 37 + 12*z + 2*z*z' + 5*z' ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> quot(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 0 }-> ifMinus(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> quot(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 3 + z' }-> ifMinus(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> ifMinus(1, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> ifMinus(0, 1 + (z - 1), z') :|: z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 + z' }-> 1 + quot(ifMinus(s'', 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 1 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {quot}, {encArg}, {encode_ifMinus}, {encode_minus}, {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ifMinus: runtime: O(n^2) [10 + 4*z' + z'*z'' + 2*z''], size: O(n^1) [z'] minus: runtime: O(n^2) [37 + 12*z + 2*z*z' + 5*z'], size: O(n^1) [z] ---------------------------------------- (49) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> quot(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 0 }-> ifMinus(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> quot(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 26 + 12*z' + 2*z'*z'' + 3*z'' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 12 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 13 + 4*z + z*z' + 3*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 11 + 4*z + z*z' + 2*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 8 + 3*z + z*z' + 2*z' }-> 1 + quot(s5, 1 + (z' - 1)) :|: s5 >= 0, s5 <= 1 + (z - 2), s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 1 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {quot}, {encArg}, {encode_ifMinus}, {encode_minus}, {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ifMinus: runtime: O(n^2) [10 + 4*z' + z'*z'' + 2*z''], size: O(n^1) [z'] minus: runtime: O(n^2) [37 + 12*z + 2*z*z' + 5*z'], size: O(n^1) [z] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> quot(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 0 }-> ifMinus(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> quot(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 26 + 12*z' + 2*z'*z'' + 3*z'' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 12 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 13 + 4*z + z*z' + 3*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 11 + 4*z + z*z' + 2*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 8 + 3*z + z*z' + 2*z' }-> 1 + quot(s5, 1 + (z' - 1)) :|: s5 >= 0, s5 <= 1 + (z - 2), s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 1 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {quot}, {encArg}, {encode_ifMinus}, {encode_minus}, {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ifMinus: runtime: O(n^2) [10 + 4*z' + z'*z'' + 2*z''], size: O(n^1) [z'] minus: runtime: O(n^2) [37 + 12*z + 2*z*z' + 5*z'], size: O(n^1) [z] quot: runtime: ?, size: O(n^1) [z] ---------------------------------------- (53) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 1 + 11*z + 2*z*z' + 3*z^2 + z^2*z' ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> quot(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 0 }-> ifMinus(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> quot(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 26 + 12*z' + 2*z'*z'' + 3*z'' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 12 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 13 + 4*z + z*z' + 3*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 11 + 4*z + z*z' + 2*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 8 + 3*z + z*z' + 2*z' }-> 1 + quot(s5, 1 + (z' - 1)) :|: s5 >= 0, s5 <= 1 + (z - 2), s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 1 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encArg}, {encode_ifMinus}, {encode_minus}, {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ifMinus: runtime: O(n^2) [10 + 4*z' + z'*z'' + 2*z''], size: O(n^1) [z'] minus: runtime: O(n^2) [37 + 12*z + 2*z*z' + 5*z'], size: O(n^1) [z] quot: runtime: O(n^3) [1 + 11*z + 2*z*z' + 3*z^2 + z^2*z'], size: O(n^1) [z] ---------------------------------------- (55) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> quot(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 0 }-> ifMinus(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> quot(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 26 + 12*z' + 2*z'*z'' + 3*z'' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 12 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 13 + 4*z + z*z' + 3*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 11 + 4*z + z*z' + 2*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 9 + 11*s5 + 2*s5*z' + 3*s5^2 + s5^2*z' + 3*z + z*z' + 2*z' }-> 1 + s7 :|: s7 >= 0, s7 <= s5, s5 >= 0, s5 <= 1 + (z - 2), s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + s8 :|: s8 >= 0, s8 <= 0, z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encArg}, {encode_ifMinus}, {encode_minus}, {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ifMinus: runtime: O(n^2) [10 + 4*z' + z'*z'' + 2*z''], size: O(n^1) [z'] minus: runtime: O(n^2) [37 + 12*z + 2*z*z' + 5*z'], size: O(n^1) [z] quot: runtime: O(n^3) [1 + 11*z + 2*z*z' + 3*z^2 + z^2*z'], size: O(n^1) [z] ---------------------------------------- (57) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> quot(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 0 }-> ifMinus(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> quot(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 26 + 12*z' + 2*z'*z'' + 3*z'' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 12 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 13 + 4*z + z*z' + 3*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 11 + 4*z + z*z' + 2*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 9 + 11*s5 + 2*s5*z' + 3*s5^2 + s5^2*z' + 3*z + z*z' + 2*z' }-> 1 + s7 :|: s7 >= 0, s7 <= s5, s5 >= 0, s5 <= 1 + (z - 2), s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + s8 :|: s8 >= 0, s8 <= 0, z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encArg}, {encode_ifMinus}, {encode_minus}, {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ifMinus: runtime: O(n^2) [10 + 4*z' + z'*z'' + 2*z''], size: O(n^1) [z'] minus: runtime: O(n^2) [37 + 12*z + 2*z*z' + 5*z'], size: O(n^1) [z] quot: runtime: O(n^3) [1 + 11*z + 2*z*z' + 3*z^2 + z^2*z'], size: O(n^1) [z] encArg: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (59) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^4) with polynomial bound: 94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> quot(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> le(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 0 }-> ifMinus(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 0 }-> le(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> quot(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 26 + 12*z' + 2*z'*z'' + 3*z'' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 12 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 13 + 4*z + z*z' + 3*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 11 + 4*z + z*z' + 2*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 9 + 11*s5 + 2*s5*z' + 3*s5^2 + s5^2*z' + 3*z + z*z' + 2*z' }-> 1 + s7 :|: s7 >= 0, s7 <= s5, s5 >= 0, s5 <= 1 + (z - 2), s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + s8 :|: s8 >= 0, s8 <= 0, z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encode_ifMinus}, {encode_minus}, {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ifMinus: runtime: O(n^2) [10 + 4*z' + z'*z'' + 2*z''], size: O(n^1) [z'] minus: runtime: O(n^2) [37 + 12*z + 2*z*z' + 5*z'], size: O(n^1) [z] quot: runtime: O(n^3) [1 + 11*z + 2*z*z' + 3*z^2 + z^2*z'], size: O(n^1) [z] encArg: runtime: O(n^4) [94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4], size: O(n^1) [1 + z] ---------------------------------------- (61) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 190 + s11 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s12 :|: s10 >= 0, s10 <= x_1 + 1, s11 >= 0, s11 <= x_2 + 1, s12 >= 0, s12 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 225 + 12*s13 + 2*s13*s14 + 5*s14 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1 + 1, s14 >= 0, s14 <= x_2 + 1, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 292 + 4*s17 + s17*s18 + 2*s18 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 + 336*x_3 + 173*x_3^2 + 34*x_3^3 + 3*x_3^4 }-> s19 :|: s16 >= 0, s16 <= x_1 + 1, s17 >= 0, s17 <= x_2 + 1, s18 >= 0, s18 <= x_3 + 1, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 189 + 11*s20 + 2*s20*s21 + 3*s20^2 + s20^2*s21 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s22 :|: s20 >= 0, s20 <= x_1 + 1, s21 >= 0, s21 <= x_2 + 1, s22 >= 0, s22 <= s20, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -100 + 80*z + 89*z^2 + 22*z^3 + 3*z^4 }-> 1 + s9 :|: s9 >= 0, s9 <= z - 1 + 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 292 + 4*s31 + s31*s32 + 2*s32 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 336*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4 }-> s33 :|: s30 >= 0, s30 <= z + 1, s31 >= 0, s31 <= z' + 1, s32 >= 0, s32 <= z'' + 1, s33 >= 0, s33 <= s31, z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 190 + s24 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s25 :|: s23 >= 0, s23 <= z + 1, s24 >= 0, s24 <= z' + 1, s25 >= 0, s25 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 225 + 12*s27 + 2*s27*s28 + 5*s28 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s29 :|: s27 >= 0, s27 <= z + 1, s28 >= 0, s28 <= z' + 1, s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 189 + 11*s34 + 2*s34*s35 + 3*s34^2 + s34^2*s35 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s36 :|: s34 >= 0, s34 <= z + 1, s35 >= 0, s35 <= z' + 1, s36 >= 0, s36 <= s34, z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z + 1, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 26 + 12*z' + 2*z'*z'' + 3*z'' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 12 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 13 + 4*z + z*z' + 3*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 11 + 4*z + z*z' + 2*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 9 + 11*s5 + 2*s5*z' + 3*s5^2 + s5^2*z' + 3*z + z*z' + 2*z' }-> 1 + s7 :|: s7 >= 0, s7 <= s5, s5 >= 0, s5 <= 1 + (z - 2), s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + s8 :|: s8 >= 0, s8 <= 0, z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encode_ifMinus}, {encode_minus}, {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ifMinus: runtime: O(n^2) [10 + 4*z' + z'*z'' + 2*z''], size: O(n^1) [z'] minus: runtime: O(n^2) [37 + 12*z + 2*z*z' + 5*z'], size: O(n^1) [z] quot: runtime: O(n^3) [1 + 11*z + 2*z*z' + 3*z^2 + z^2*z'], size: O(n^1) [z] encArg: runtime: O(n^4) [94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4], size: O(n^1) [1 + z] ---------------------------------------- (63) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_ifMinus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 190 + s11 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s12 :|: s10 >= 0, s10 <= x_1 + 1, s11 >= 0, s11 <= x_2 + 1, s12 >= 0, s12 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 225 + 12*s13 + 2*s13*s14 + 5*s14 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1 + 1, s14 >= 0, s14 <= x_2 + 1, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 292 + 4*s17 + s17*s18 + 2*s18 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 + 336*x_3 + 173*x_3^2 + 34*x_3^3 + 3*x_3^4 }-> s19 :|: s16 >= 0, s16 <= x_1 + 1, s17 >= 0, s17 <= x_2 + 1, s18 >= 0, s18 <= x_3 + 1, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 189 + 11*s20 + 2*s20*s21 + 3*s20^2 + s20^2*s21 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s22 :|: s20 >= 0, s20 <= x_1 + 1, s21 >= 0, s21 <= x_2 + 1, s22 >= 0, s22 <= s20, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -100 + 80*z + 89*z^2 + 22*z^3 + 3*z^4 }-> 1 + s9 :|: s9 >= 0, s9 <= z - 1 + 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 292 + 4*s31 + s31*s32 + 2*s32 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 336*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4 }-> s33 :|: s30 >= 0, s30 <= z + 1, s31 >= 0, s31 <= z' + 1, s32 >= 0, s32 <= z'' + 1, s33 >= 0, s33 <= s31, z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 190 + s24 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s25 :|: s23 >= 0, s23 <= z + 1, s24 >= 0, s24 <= z' + 1, s25 >= 0, s25 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 225 + 12*s27 + 2*s27*s28 + 5*s28 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s29 :|: s27 >= 0, s27 <= z + 1, s28 >= 0, s28 <= z' + 1, s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 189 + 11*s34 + 2*s34*s35 + 3*s34^2 + s34^2*s35 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s36 :|: s34 >= 0, s34 <= z + 1, s35 >= 0, s35 <= z' + 1, s36 >= 0, s36 <= s34, z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z + 1, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 26 + 12*z' + 2*z'*z'' + 3*z'' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 12 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 13 + 4*z + z*z' + 3*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 11 + 4*z + z*z' + 2*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 9 + 11*s5 + 2*s5*z' + 3*s5^2 + s5^2*z' + 3*z + z*z' + 2*z' }-> 1 + s7 :|: s7 >= 0, s7 <= s5, s5 >= 0, s5 <= 1 + (z - 2), s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + s8 :|: s8 >= 0, s8 <= 0, z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encode_ifMinus}, {encode_minus}, {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ifMinus: runtime: O(n^2) [10 + 4*z' + z'*z'' + 2*z''], size: O(n^1) [z'] minus: runtime: O(n^2) [37 + 12*z + 2*z*z' + 5*z'], size: O(n^1) [z] quot: runtime: O(n^3) [1 + 11*z + 2*z*z' + 3*z^2 + z^2*z'], size: O(n^1) [z] encArg: runtime: O(n^4) [94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4], size: O(n^1) [1 + z] encode_ifMinus: runtime: ?, size: O(n^1) [1 + z'] ---------------------------------------- (65) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_ifMinus after applying outer abstraction to obtain an ITS, resulting in: O(n^4) with polynomial bound: 299 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 341*z' + z'*z'' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 339*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4 ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 190 + s11 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s12 :|: s10 >= 0, s10 <= x_1 + 1, s11 >= 0, s11 <= x_2 + 1, s12 >= 0, s12 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 225 + 12*s13 + 2*s13*s14 + 5*s14 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1 + 1, s14 >= 0, s14 <= x_2 + 1, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 292 + 4*s17 + s17*s18 + 2*s18 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 + 336*x_3 + 173*x_3^2 + 34*x_3^3 + 3*x_3^4 }-> s19 :|: s16 >= 0, s16 <= x_1 + 1, s17 >= 0, s17 <= x_2 + 1, s18 >= 0, s18 <= x_3 + 1, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 189 + 11*s20 + 2*s20*s21 + 3*s20^2 + s20^2*s21 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s22 :|: s20 >= 0, s20 <= x_1 + 1, s21 >= 0, s21 <= x_2 + 1, s22 >= 0, s22 <= s20, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -100 + 80*z + 89*z^2 + 22*z^3 + 3*z^4 }-> 1 + s9 :|: s9 >= 0, s9 <= z - 1 + 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 292 + 4*s31 + s31*s32 + 2*s32 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 336*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4 }-> s33 :|: s30 >= 0, s30 <= z + 1, s31 >= 0, s31 <= z' + 1, s32 >= 0, s32 <= z'' + 1, s33 >= 0, s33 <= s31, z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 190 + s24 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s25 :|: s23 >= 0, s23 <= z + 1, s24 >= 0, s24 <= z' + 1, s25 >= 0, s25 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 225 + 12*s27 + 2*s27*s28 + 5*s28 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s29 :|: s27 >= 0, s27 <= z + 1, s28 >= 0, s28 <= z' + 1, s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 189 + 11*s34 + 2*s34*s35 + 3*s34^2 + s34^2*s35 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s36 :|: s34 >= 0, s34 <= z + 1, s35 >= 0, s35 <= z' + 1, s36 >= 0, s36 <= s34, z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z + 1, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 26 + 12*z' + 2*z'*z'' + 3*z'' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 12 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 13 + 4*z + z*z' + 3*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 11 + 4*z + z*z' + 2*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 9 + 11*s5 + 2*s5*z' + 3*s5^2 + s5^2*z' + 3*z + z*z' + 2*z' }-> 1 + s7 :|: s7 >= 0, s7 <= s5, s5 >= 0, s5 <= 1 + (z - 2), s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + s8 :|: s8 >= 0, s8 <= 0, z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encode_minus}, {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ifMinus: runtime: O(n^2) [10 + 4*z' + z'*z'' + 2*z''], size: O(n^1) [z'] minus: runtime: O(n^2) [37 + 12*z + 2*z*z' + 5*z'], size: O(n^1) [z] quot: runtime: O(n^3) [1 + 11*z + 2*z*z' + 3*z^2 + z^2*z'], size: O(n^1) [z] encArg: runtime: O(n^4) [94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4], size: O(n^1) [1 + z] encode_ifMinus: runtime: O(n^4) [299 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 341*z' + z'*z'' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 339*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4], size: O(n^1) [1 + z'] ---------------------------------------- (67) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 190 + s11 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s12 :|: s10 >= 0, s10 <= x_1 + 1, s11 >= 0, s11 <= x_2 + 1, s12 >= 0, s12 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 225 + 12*s13 + 2*s13*s14 + 5*s14 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1 + 1, s14 >= 0, s14 <= x_2 + 1, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 292 + 4*s17 + s17*s18 + 2*s18 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 + 336*x_3 + 173*x_3^2 + 34*x_3^3 + 3*x_3^4 }-> s19 :|: s16 >= 0, s16 <= x_1 + 1, s17 >= 0, s17 <= x_2 + 1, s18 >= 0, s18 <= x_3 + 1, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 189 + 11*s20 + 2*s20*s21 + 3*s20^2 + s20^2*s21 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s22 :|: s20 >= 0, s20 <= x_1 + 1, s21 >= 0, s21 <= x_2 + 1, s22 >= 0, s22 <= s20, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -100 + 80*z + 89*z^2 + 22*z^3 + 3*z^4 }-> 1 + s9 :|: s9 >= 0, s9 <= z - 1 + 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 292 + 4*s31 + s31*s32 + 2*s32 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 336*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4 }-> s33 :|: s30 >= 0, s30 <= z + 1, s31 >= 0, s31 <= z' + 1, s32 >= 0, s32 <= z'' + 1, s33 >= 0, s33 <= s31, z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 190 + s24 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s25 :|: s23 >= 0, s23 <= z + 1, s24 >= 0, s24 <= z' + 1, s25 >= 0, s25 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 225 + 12*s27 + 2*s27*s28 + 5*s28 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s29 :|: s27 >= 0, s27 <= z + 1, s28 >= 0, s28 <= z' + 1, s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 189 + 11*s34 + 2*s34*s35 + 3*s34^2 + s34^2*s35 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s36 :|: s34 >= 0, s34 <= z + 1, s35 >= 0, s35 <= z' + 1, s36 >= 0, s36 <= s34, z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z + 1, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 26 + 12*z' + 2*z'*z'' + 3*z'' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 12 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 13 + 4*z + z*z' + 3*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 11 + 4*z + z*z' + 2*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 9 + 11*s5 + 2*s5*z' + 3*s5^2 + s5^2*z' + 3*z + z*z' + 2*z' }-> 1 + s7 :|: s7 >= 0, s7 <= s5, s5 >= 0, s5 <= 1 + (z - 2), s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + s8 :|: s8 >= 0, s8 <= 0, z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encode_minus}, {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ifMinus: runtime: O(n^2) [10 + 4*z' + z'*z'' + 2*z''], size: O(n^1) [z'] minus: runtime: O(n^2) [37 + 12*z + 2*z*z' + 5*z'], size: O(n^1) [z] quot: runtime: O(n^3) [1 + 11*z + 2*z*z' + 3*z^2 + z^2*z'], size: O(n^1) [z] encArg: runtime: O(n^4) [94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4], size: O(n^1) [1 + z] encode_ifMinus: runtime: O(n^4) [299 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 341*z' + z'*z'' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 339*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4], size: O(n^1) [1 + z'] ---------------------------------------- (69) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (70) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 190 + s11 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s12 :|: s10 >= 0, s10 <= x_1 + 1, s11 >= 0, s11 <= x_2 + 1, s12 >= 0, s12 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 225 + 12*s13 + 2*s13*s14 + 5*s14 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1 + 1, s14 >= 0, s14 <= x_2 + 1, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 292 + 4*s17 + s17*s18 + 2*s18 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 + 336*x_3 + 173*x_3^2 + 34*x_3^3 + 3*x_3^4 }-> s19 :|: s16 >= 0, s16 <= x_1 + 1, s17 >= 0, s17 <= x_2 + 1, s18 >= 0, s18 <= x_3 + 1, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 189 + 11*s20 + 2*s20*s21 + 3*s20^2 + s20^2*s21 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s22 :|: s20 >= 0, s20 <= x_1 + 1, s21 >= 0, s21 <= x_2 + 1, s22 >= 0, s22 <= s20, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -100 + 80*z + 89*z^2 + 22*z^3 + 3*z^4 }-> 1 + s9 :|: s9 >= 0, s9 <= z - 1 + 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 292 + 4*s31 + s31*s32 + 2*s32 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 336*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4 }-> s33 :|: s30 >= 0, s30 <= z + 1, s31 >= 0, s31 <= z' + 1, s32 >= 0, s32 <= z'' + 1, s33 >= 0, s33 <= s31, z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 190 + s24 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s25 :|: s23 >= 0, s23 <= z + 1, s24 >= 0, s24 <= z' + 1, s25 >= 0, s25 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 225 + 12*s27 + 2*s27*s28 + 5*s28 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s29 :|: s27 >= 0, s27 <= z + 1, s28 >= 0, s28 <= z' + 1, s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 189 + 11*s34 + 2*s34*s35 + 3*s34^2 + s34^2*s35 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s36 :|: s34 >= 0, s34 <= z + 1, s35 >= 0, s35 <= z' + 1, s36 >= 0, s36 <= s34, z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z + 1, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 26 + 12*z' + 2*z'*z'' + 3*z'' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 12 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 13 + 4*z + z*z' + 3*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 11 + 4*z + z*z' + 2*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 9 + 11*s5 + 2*s5*z' + 3*s5^2 + s5^2*z' + 3*z + z*z' + 2*z' }-> 1 + s7 :|: s7 >= 0, s7 <= s5, s5 >= 0, s5 <= 1 + (z - 2), s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + s8 :|: s8 >= 0, s8 <= 0, z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encode_minus}, {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ifMinus: runtime: O(n^2) [10 + 4*z' + z'*z'' + 2*z''], size: O(n^1) [z'] minus: runtime: O(n^2) [37 + 12*z + 2*z*z' + 5*z'], size: O(n^1) [z] quot: runtime: O(n^3) [1 + 11*z + 2*z*z' + 3*z^2 + z^2*z'], size: O(n^1) [z] encArg: runtime: O(n^4) [94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4], size: O(n^1) [1 + z] encode_ifMinus: runtime: O(n^4) [299 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 341*z' + z'*z'' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 339*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4], size: O(n^1) [1 + z'] encode_minus: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (71) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_minus after applying outer abstraction to obtain an ITS, resulting in: O(n^4) with polynomial bound: 244 + 350*z + 2*z*z' + 173*z^2 + 34*z^3 + 3*z^4 + 343*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 ---------------------------------------- (72) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 190 + s11 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s12 :|: s10 >= 0, s10 <= x_1 + 1, s11 >= 0, s11 <= x_2 + 1, s12 >= 0, s12 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 225 + 12*s13 + 2*s13*s14 + 5*s14 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1 + 1, s14 >= 0, s14 <= x_2 + 1, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 292 + 4*s17 + s17*s18 + 2*s18 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 + 336*x_3 + 173*x_3^2 + 34*x_3^3 + 3*x_3^4 }-> s19 :|: s16 >= 0, s16 <= x_1 + 1, s17 >= 0, s17 <= x_2 + 1, s18 >= 0, s18 <= x_3 + 1, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 189 + 11*s20 + 2*s20*s21 + 3*s20^2 + s20^2*s21 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s22 :|: s20 >= 0, s20 <= x_1 + 1, s21 >= 0, s21 <= x_2 + 1, s22 >= 0, s22 <= s20, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -100 + 80*z + 89*z^2 + 22*z^3 + 3*z^4 }-> 1 + s9 :|: s9 >= 0, s9 <= z - 1 + 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 292 + 4*s31 + s31*s32 + 2*s32 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 336*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4 }-> s33 :|: s30 >= 0, s30 <= z + 1, s31 >= 0, s31 <= z' + 1, s32 >= 0, s32 <= z'' + 1, s33 >= 0, s33 <= s31, z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 190 + s24 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s25 :|: s23 >= 0, s23 <= z + 1, s24 >= 0, s24 <= z' + 1, s25 >= 0, s25 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 225 + 12*s27 + 2*s27*s28 + 5*s28 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s29 :|: s27 >= 0, s27 <= z + 1, s28 >= 0, s28 <= z' + 1, s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 189 + 11*s34 + 2*s34*s35 + 3*s34^2 + s34^2*s35 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s36 :|: s34 >= 0, s34 <= z + 1, s35 >= 0, s35 <= z' + 1, s36 >= 0, s36 <= s34, z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z + 1, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 26 + 12*z' + 2*z'*z'' + 3*z'' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 12 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 13 + 4*z + z*z' + 3*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 11 + 4*z + z*z' + 2*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 9 + 11*s5 + 2*s5*z' + 3*s5^2 + s5^2*z' + 3*z + z*z' + 2*z' }-> 1 + s7 :|: s7 >= 0, s7 <= s5, s5 >= 0, s5 <= 1 + (z - 2), s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + s8 :|: s8 >= 0, s8 <= 0, z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ifMinus: runtime: O(n^2) [10 + 4*z' + z'*z'' + 2*z''], size: O(n^1) [z'] minus: runtime: O(n^2) [37 + 12*z + 2*z*z' + 5*z'], size: O(n^1) [z] quot: runtime: O(n^3) [1 + 11*z + 2*z*z' + 3*z^2 + z^2*z'], size: O(n^1) [z] encArg: runtime: O(n^4) [94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4], size: O(n^1) [1 + z] encode_ifMinus: runtime: O(n^4) [299 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 341*z' + z'*z'' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 339*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4], size: O(n^1) [1 + z'] encode_minus: runtime: O(n^4) [244 + 350*z + 2*z*z' + 173*z^2 + 34*z^3 + 3*z^4 + 343*z' + 173*z'^2 + 34*z'^3 + 3*z'^4], size: O(n^1) [1 + z] ---------------------------------------- (73) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (74) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 190 + s11 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s12 :|: s10 >= 0, s10 <= x_1 + 1, s11 >= 0, s11 <= x_2 + 1, s12 >= 0, s12 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 225 + 12*s13 + 2*s13*s14 + 5*s14 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1 + 1, s14 >= 0, s14 <= x_2 + 1, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 292 + 4*s17 + s17*s18 + 2*s18 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 + 336*x_3 + 173*x_3^2 + 34*x_3^3 + 3*x_3^4 }-> s19 :|: s16 >= 0, s16 <= x_1 + 1, s17 >= 0, s17 <= x_2 + 1, s18 >= 0, s18 <= x_3 + 1, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 189 + 11*s20 + 2*s20*s21 + 3*s20^2 + s20^2*s21 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s22 :|: s20 >= 0, s20 <= x_1 + 1, s21 >= 0, s21 <= x_2 + 1, s22 >= 0, s22 <= s20, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -100 + 80*z + 89*z^2 + 22*z^3 + 3*z^4 }-> 1 + s9 :|: s9 >= 0, s9 <= z - 1 + 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 292 + 4*s31 + s31*s32 + 2*s32 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 336*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4 }-> s33 :|: s30 >= 0, s30 <= z + 1, s31 >= 0, s31 <= z' + 1, s32 >= 0, s32 <= z'' + 1, s33 >= 0, s33 <= s31, z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 190 + s24 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s25 :|: s23 >= 0, s23 <= z + 1, s24 >= 0, s24 <= z' + 1, s25 >= 0, s25 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 225 + 12*s27 + 2*s27*s28 + 5*s28 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s29 :|: s27 >= 0, s27 <= z + 1, s28 >= 0, s28 <= z' + 1, s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 189 + 11*s34 + 2*s34*s35 + 3*s34^2 + s34^2*s35 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s36 :|: s34 >= 0, s34 <= z + 1, s35 >= 0, s35 <= z' + 1, s36 >= 0, s36 <= s34, z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z + 1, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 26 + 12*z' + 2*z'*z'' + 3*z'' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 12 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 13 + 4*z + z*z' + 3*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 11 + 4*z + z*z' + 2*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 9 + 11*s5 + 2*s5*z' + 3*s5^2 + s5^2*z' + 3*z + z*z' + 2*z' }-> 1 + s7 :|: s7 >= 0, s7 <= s5, s5 >= 0, s5 <= 1 + (z - 2), s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + s8 :|: s8 >= 0, s8 <= 0, z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ifMinus: runtime: O(n^2) [10 + 4*z' + z'*z'' + 2*z''], size: O(n^1) [z'] minus: runtime: O(n^2) [37 + 12*z + 2*z*z' + 5*z'], size: O(n^1) [z] quot: runtime: O(n^3) [1 + 11*z + 2*z*z' + 3*z^2 + z^2*z'], size: O(n^1) [z] encArg: runtime: O(n^4) [94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4], size: O(n^1) [1 + z] encode_ifMinus: runtime: O(n^4) [299 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 341*z' + z'*z'' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 339*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4], size: O(n^1) [1 + z'] encode_minus: runtime: O(n^4) [244 + 350*z + 2*z*z' + 173*z^2 + 34*z^3 + 3*z^4 + 343*z' + 173*z'^2 + 34*z'^3 + 3*z'^4], size: O(n^1) [1 + z] ---------------------------------------- (75) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_le after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (76) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 190 + s11 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s12 :|: s10 >= 0, s10 <= x_1 + 1, s11 >= 0, s11 <= x_2 + 1, s12 >= 0, s12 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 225 + 12*s13 + 2*s13*s14 + 5*s14 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1 + 1, s14 >= 0, s14 <= x_2 + 1, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 292 + 4*s17 + s17*s18 + 2*s18 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 + 336*x_3 + 173*x_3^2 + 34*x_3^3 + 3*x_3^4 }-> s19 :|: s16 >= 0, s16 <= x_1 + 1, s17 >= 0, s17 <= x_2 + 1, s18 >= 0, s18 <= x_3 + 1, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 189 + 11*s20 + 2*s20*s21 + 3*s20^2 + s20^2*s21 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s22 :|: s20 >= 0, s20 <= x_1 + 1, s21 >= 0, s21 <= x_2 + 1, s22 >= 0, s22 <= s20, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -100 + 80*z + 89*z^2 + 22*z^3 + 3*z^4 }-> 1 + s9 :|: s9 >= 0, s9 <= z - 1 + 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 292 + 4*s31 + s31*s32 + 2*s32 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 336*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4 }-> s33 :|: s30 >= 0, s30 <= z + 1, s31 >= 0, s31 <= z' + 1, s32 >= 0, s32 <= z'' + 1, s33 >= 0, s33 <= s31, z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 190 + s24 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s25 :|: s23 >= 0, s23 <= z + 1, s24 >= 0, s24 <= z' + 1, s25 >= 0, s25 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 225 + 12*s27 + 2*s27*s28 + 5*s28 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s29 :|: s27 >= 0, s27 <= z + 1, s28 >= 0, s28 <= z' + 1, s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 189 + 11*s34 + 2*s34*s35 + 3*s34^2 + s34^2*s35 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s36 :|: s34 >= 0, s34 <= z + 1, s35 >= 0, s35 <= z' + 1, s36 >= 0, s36 <= s34, z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z + 1, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 26 + 12*z' + 2*z'*z'' + 3*z'' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 12 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 13 + 4*z + z*z' + 3*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 11 + 4*z + z*z' + 2*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 9 + 11*s5 + 2*s5*z' + 3*s5^2 + s5^2*z' + 3*z + z*z' + 2*z' }-> 1 + s7 :|: s7 >= 0, s7 <= s5, s5 >= 0, s5 <= 1 + (z - 2), s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + s8 :|: s8 >= 0, s8 <= 0, z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encode_le}, {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ifMinus: runtime: O(n^2) [10 + 4*z' + z'*z'' + 2*z''], size: O(n^1) [z'] minus: runtime: O(n^2) [37 + 12*z + 2*z*z' + 5*z'], size: O(n^1) [z] quot: runtime: O(n^3) [1 + 11*z + 2*z*z' + 3*z^2 + z^2*z'], size: O(n^1) [z] encArg: runtime: O(n^4) [94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4], size: O(n^1) [1 + z] encode_ifMinus: runtime: O(n^4) [299 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 341*z' + z'*z'' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 339*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4], size: O(n^1) [1 + z'] encode_minus: runtime: O(n^4) [244 + 350*z + 2*z*z' + 173*z^2 + 34*z^3 + 3*z^4 + 343*z' + 173*z'^2 + 34*z'^3 + 3*z'^4], size: O(n^1) [1 + z] encode_le: runtime: ?, size: O(1) [2] ---------------------------------------- (77) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_le after applying outer abstraction to obtain an ITS, resulting in: O(n^4) with polynomial bound: 191 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 337*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 ---------------------------------------- (78) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 190 + s11 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s12 :|: s10 >= 0, s10 <= x_1 + 1, s11 >= 0, s11 <= x_2 + 1, s12 >= 0, s12 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 225 + 12*s13 + 2*s13*s14 + 5*s14 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1 + 1, s14 >= 0, s14 <= x_2 + 1, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 292 + 4*s17 + s17*s18 + 2*s18 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 + 336*x_3 + 173*x_3^2 + 34*x_3^3 + 3*x_3^4 }-> s19 :|: s16 >= 0, s16 <= x_1 + 1, s17 >= 0, s17 <= x_2 + 1, s18 >= 0, s18 <= x_3 + 1, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 189 + 11*s20 + 2*s20*s21 + 3*s20^2 + s20^2*s21 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s22 :|: s20 >= 0, s20 <= x_1 + 1, s21 >= 0, s21 <= x_2 + 1, s22 >= 0, s22 <= s20, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -100 + 80*z + 89*z^2 + 22*z^3 + 3*z^4 }-> 1 + s9 :|: s9 >= 0, s9 <= z - 1 + 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 292 + 4*s31 + s31*s32 + 2*s32 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 336*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4 }-> s33 :|: s30 >= 0, s30 <= z + 1, s31 >= 0, s31 <= z' + 1, s32 >= 0, s32 <= z'' + 1, s33 >= 0, s33 <= s31, z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 190 + s24 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s25 :|: s23 >= 0, s23 <= z + 1, s24 >= 0, s24 <= z' + 1, s25 >= 0, s25 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 225 + 12*s27 + 2*s27*s28 + 5*s28 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s29 :|: s27 >= 0, s27 <= z + 1, s28 >= 0, s28 <= z' + 1, s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 189 + 11*s34 + 2*s34*s35 + 3*s34^2 + s34^2*s35 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s36 :|: s34 >= 0, s34 <= z + 1, s35 >= 0, s35 <= z' + 1, s36 >= 0, s36 <= s34, z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z + 1, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 26 + 12*z' + 2*z'*z'' + 3*z'' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 12 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 13 + 4*z + z*z' + 3*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 11 + 4*z + z*z' + 2*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 9 + 11*s5 + 2*s5*z' + 3*s5^2 + s5^2*z' + 3*z + z*z' + 2*z' }-> 1 + s7 :|: s7 >= 0, s7 <= s5, s5 >= 0, s5 <= 1 + (z - 2), s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + s8 :|: s8 >= 0, s8 <= 0, z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ifMinus: runtime: O(n^2) [10 + 4*z' + z'*z'' + 2*z''], size: O(n^1) [z'] minus: runtime: O(n^2) [37 + 12*z + 2*z*z' + 5*z'], size: O(n^1) [z] quot: runtime: O(n^3) [1 + 11*z + 2*z*z' + 3*z^2 + z^2*z'], size: O(n^1) [z] encArg: runtime: O(n^4) [94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4], size: O(n^1) [1 + z] encode_ifMinus: runtime: O(n^4) [299 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 341*z' + z'*z'' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 339*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4], size: O(n^1) [1 + z'] encode_minus: runtime: O(n^4) [244 + 350*z + 2*z*z' + 173*z^2 + 34*z^3 + 3*z^4 + 343*z' + 173*z'^2 + 34*z'^3 + 3*z'^4], size: O(n^1) [1 + z] encode_le: runtime: O(n^4) [191 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 337*z' + 173*z'^2 + 34*z'^3 + 3*z'^4], size: O(1) [2] ---------------------------------------- (79) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (80) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 190 + s11 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s12 :|: s10 >= 0, s10 <= x_1 + 1, s11 >= 0, s11 <= x_2 + 1, s12 >= 0, s12 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 225 + 12*s13 + 2*s13*s14 + 5*s14 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1 + 1, s14 >= 0, s14 <= x_2 + 1, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 292 + 4*s17 + s17*s18 + 2*s18 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 + 336*x_3 + 173*x_3^2 + 34*x_3^3 + 3*x_3^4 }-> s19 :|: s16 >= 0, s16 <= x_1 + 1, s17 >= 0, s17 <= x_2 + 1, s18 >= 0, s18 <= x_3 + 1, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 189 + 11*s20 + 2*s20*s21 + 3*s20^2 + s20^2*s21 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s22 :|: s20 >= 0, s20 <= x_1 + 1, s21 >= 0, s21 <= x_2 + 1, s22 >= 0, s22 <= s20, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -100 + 80*z + 89*z^2 + 22*z^3 + 3*z^4 }-> 1 + s9 :|: s9 >= 0, s9 <= z - 1 + 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 292 + 4*s31 + s31*s32 + 2*s32 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 336*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4 }-> s33 :|: s30 >= 0, s30 <= z + 1, s31 >= 0, s31 <= z' + 1, s32 >= 0, s32 <= z'' + 1, s33 >= 0, s33 <= s31, z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 190 + s24 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s25 :|: s23 >= 0, s23 <= z + 1, s24 >= 0, s24 <= z' + 1, s25 >= 0, s25 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 225 + 12*s27 + 2*s27*s28 + 5*s28 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s29 :|: s27 >= 0, s27 <= z + 1, s28 >= 0, s28 <= z' + 1, s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 189 + 11*s34 + 2*s34*s35 + 3*s34^2 + s34^2*s35 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s36 :|: s34 >= 0, s34 <= z + 1, s35 >= 0, s35 <= z' + 1, s36 >= 0, s36 <= s34, z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z + 1, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 26 + 12*z' + 2*z'*z'' + 3*z'' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 12 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 13 + 4*z + z*z' + 3*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 11 + 4*z + z*z' + 2*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 9 + 11*s5 + 2*s5*z' + 3*s5^2 + s5^2*z' + 3*z + z*z' + 2*z' }-> 1 + s7 :|: s7 >= 0, s7 <= s5, s5 >= 0, s5 <= 1 + (z - 2), s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + s8 :|: s8 >= 0, s8 <= 0, z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ifMinus: runtime: O(n^2) [10 + 4*z' + z'*z'' + 2*z''], size: O(n^1) [z'] minus: runtime: O(n^2) [37 + 12*z + 2*z*z' + 5*z'], size: O(n^1) [z] quot: runtime: O(n^3) [1 + 11*z + 2*z*z' + 3*z^2 + z^2*z'], size: O(n^1) [z] encArg: runtime: O(n^4) [94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4], size: O(n^1) [1 + z] encode_ifMinus: runtime: O(n^4) [299 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 341*z' + z'*z'' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 339*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4], size: O(n^1) [1 + z'] encode_minus: runtime: O(n^4) [244 + 350*z + 2*z*z' + 173*z^2 + 34*z^3 + 3*z^4 + 343*z' + 173*z'^2 + 34*z'^3 + 3*z'^4], size: O(n^1) [1 + z] encode_le: runtime: O(n^4) [191 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 337*z' + 173*z'^2 + 34*z'^3 + 3*z'^4], size: O(1) [2] ---------------------------------------- (81) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_quot after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (82) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 190 + s11 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s12 :|: s10 >= 0, s10 <= x_1 + 1, s11 >= 0, s11 <= x_2 + 1, s12 >= 0, s12 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 225 + 12*s13 + 2*s13*s14 + 5*s14 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1 + 1, s14 >= 0, s14 <= x_2 + 1, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 292 + 4*s17 + s17*s18 + 2*s18 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 + 336*x_3 + 173*x_3^2 + 34*x_3^3 + 3*x_3^4 }-> s19 :|: s16 >= 0, s16 <= x_1 + 1, s17 >= 0, s17 <= x_2 + 1, s18 >= 0, s18 <= x_3 + 1, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 189 + 11*s20 + 2*s20*s21 + 3*s20^2 + s20^2*s21 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s22 :|: s20 >= 0, s20 <= x_1 + 1, s21 >= 0, s21 <= x_2 + 1, s22 >= 0, s22 <= s20, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -100 + 80*z + 89*z^2 + 22*z^3 + 3*z^4 }-> 1 + s9 :|: s9 >= 0, s9 <= z - 1 + 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 292 + 4*s31 + s31*s32 + 2*s32 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 336*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4 }-> s33 :|: s30 >= 0, s30 <= z + 1, s31 >= 0, s31 <= z' + 1, s32 >= 0, s32 <= z'' + 1, s33 >= 0, s33 <= s31, z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 190 + s24 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s25 :|: s23 >= 0, s23 <= z + 1, s24 >= 0, s24 <= z' + 1, s25 >= 0, s25 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 225 + 12*s27 + 2*s27*s28 + 5*s28 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s29 :|: s27 >= 0, s27 <= z + 1, s28 >= 0, s28 <= z' + 1, s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 189 + 11*s34 + 2*s34*s35 + 3*s34^2 + s34^2*s35 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s36 :|: s34 >= 0, s34 <= z + 1, s35 >= 0, s35 <= z' + 1, s36 >= 0, s36 <= s34, z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z + 1, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 26 + 12*z' + 2*z'*z'' + 3*z'' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 12 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 13 + 4*z + z*z' + 3*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 11 + 4*z + z*z' + 2*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 9 + 11*s5 + 2*s5*z' + 3*s5^2 + s5^2*z' + 3*z + z*z' + 2*z' }-> 1 + s7 :|: s7 >= 0, s7 <= s5, s5 >= 0, s5 <= 1 + (z - 2), s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + s8 :|: s8 >= 0, s8 <= 0, z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encode_quot}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ifMinus: runtime: O(n^2) [10 + 4*z' + z'*z'' + 2*z''], size: O(n^1) [z'] minus: runtime: O(n^2) [37 + 12*z + 2*z*z' + 5*z'], size: O(n^1) [z] quot: runtime: O(n^3) [1 + 11*z + 2*z*z' + 3*z^2 + z^2*z'], size: O(n^1) [z] encArg: runtime: O(n^4) [94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4], size: O(n^1) [1 + z] encode_ifMinus: runtime: O(n^4) [299 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 341*z' + z'*z'' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 339*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4], size: O(n^1) [1 + z'] encode_minus: runtime: O(n^4) [244 + 350*z + 2*z*z' + 173*z^2 + 34*z^3 + 3*z^4 + 343*z' + 173*z'^2 + 34*z'^3 + 3*z'^4], size: O(n^1) [1 + z] encode_le: runtime: O(n^4) [191 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 337*z' + 173*z'^2 + 34*z'^3 + 3*z'^4], size: O(1) [2] encode_quot: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (83) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_quot after applying outer abstraction to obtain an ITS, resulting in: O(n^4) with polynomial bound: 206 + 357*z + 4*z*z' + 177*z^2 + z^2*z' + 34*z^3 + 3*z^4 + 339*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 ---------------------------------------- (84) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 190 + s11 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s12 :|: s10 >= 0, s10 <= x_1 + 1, s11 >= 0, s11 <= x_2 + 1, s12 >= 0, s12 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 225 + 12*s13 + 2*s13*s14 + 5*s14 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1 + 1, s14 >= 0, s14 <= x_2 + 1, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 292 + 4*s17 + s17*s18 + 2*s18 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 + 336*x_3 + 173*x_3^2 + 34*x_3^3 + 3*x_3^4 }-> s19 :|: s16 >= 0, s16 <= x_1 + 1, s17 >= 0, s17 <= x_2 + 1, s18 >= 0, s18 <= x_3 + 1, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 189 + 11*s20 + 2*s20*s21 + 3*s20^2 + s20^2*s21 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s22 :|: s20 >= 0, s20 <= x_1 + 1, s21 >= 0, s21 <= x_2 + 1, s22 >= 0, s22 <= s20, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -100 + 80*z + 89*z^2 + 22*z^3 + 3*z^4 }-> 1 + s9 :|: s9 >= 0, s9 <= z - 1 + 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 292 + 4*s31 + s31*s32 + 2*s32 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 336*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4 }-> s33 :|: s30 >= 0, s30 <= z + 1, s31 >= 0, s31 <= z' + 1, s32 >= 0, s32 <= z'' + 1, s33 >= 0, s33 <= s31, z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 190 + s24 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s25 :|: s23 >= 0, s23 <= z + 1, s24 >= 0, s24 <= z' + 1, s25 >= 0, s25 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 225 + 12*s27 + 2*s27*s28 + 5*s28 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s29 :|: s27 >= 0, s27 <= z + 1, s28 >= 0, s28 <= z' + 1, s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 189 + 11*s34 + 2*s34*s35 + 3*s34^2 + s34^2*s35 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s36 :|: s34 >= 0, s34 <= z + 1, s35 >= 0, s35 <= z' + 1, s36 >= 0, s36 <= s34, z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z + 1, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 26 + 12*z' + 2*z'*z'' + 3*z'' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 12 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 13 + 4*z + z*z' + 3*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 11 + 4*z + z*z' + 2*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 9 + 11*s5 + 2*s5*z' + 3*s5^2 + s5^2*z' + 3*z + z*z' + 2*z' }-> 1 + s7 :|: s7 >= 0, s7 <= s5, s5 >= 0, s5 <= 1 + (z - 2), s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + s8 :|: s8 >= 0, s8 <= 0, z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ifMinus: runtime: O(n^2) [10 + 4*z' + z'*z'' + 2*z''], size: O(n^1) [z'] minus: runtime: O(n^2) [37 + 12*z + 2*z*z' + 5*z'], size: O(n^1) [z] quot: runtime: O(n^3) [1 + 11*z + 2*z*z' + 3*z^2 + z^2*z'], size: O(n^1) [z] encArg: runtime: O(n^4) [94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4], size: O(n^1) [1 + z] encode_ifMinus: runtime: O(n^4) [299 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 341*z' + z'*z'' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 339*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4], size: O(n^1) [1 + z'] encode_minus: runtime: O(n^4) [244 + 350*z + 2*z*z' + 173*z^2 + 34*z^3 + 3*z^4 + 343*z' + 173*z'^2 + 34*z'^3 + 3*z'^4], size: O(n^1) [1 + z] encode_le: runtime: O(n^4) [191 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 337*z' + 173*z'^2 + 34*z'^3 + 3*z'^4], size: O(1) [2] encode_quot: runtime: O(n^4) [206 + 357*z + 4*z*z' + 177*z^2 + z^2*z' + 34*z^3 + 3*z^4 + 339*z' + 173*z'^2 + 34*z'^3 + 3*z'^4], size: O(n^1) [1 + z] ---------------------------------------- (85) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (86) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 190 + s11 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s12 :|: s10 >= 0, s10 <= x_1 + 1, s11 >= 0, s11 <= x_2 + 1, s12 >= 0, s12 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 225 + 12*s13 + 2*s13*s14 + 5*s14 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1 + 1, s14 >= 0, s14 <= x_2 + 1, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 292 + 4*s17 + s17*s18 + 2*s18 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 + 336*x_3 + 173*x_3^2 + 34*x_3^3 + 3*x_3^4 }-> s19 :|: s16 >= 0, s16 <= x_1 + 1, s17 >= 0, s17 <= x_2 + 1, s18 >= 0, s18 <= x_3 + 1, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 189 + 11*s20 + 2*s20*s21 + 3*s20^2 + s20^2*s21 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s22 :|: s20 >= 0, s20 <= x_1 + 1, s21 >= 0, s21 <= x_2 + 1, s22 >= 0, s22 <= s20, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -100 + 80*z + 89*z^2 + 22*z^3 + 3*z^4 }-> 1 + s9 :|: s9 >= 0, s9 <= z - 1 + 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 292 + 4*s31 + s31*s32 + 2*s32 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 336*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4 }-> s33 :|: s30 >= 0, s30 <= z + 1, s31 >= 0, s31 <= z' + 1, s32 >= 0, s32 <= z'' + 1, s33 >= 0, s33 <= s31, z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 190 + s24 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s25 :|: s23 >= 0, s23 <= z + 1, s24 >= 0, s24 <= z' + 1, s25 >= 0, s25 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 225 + 12*s27 + 2*s27*s28 + 5*s28 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s29 :|: s27 >= 0, s27 <= z + 1, s28 >= 0, s28 <= z' + 1, s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 189 + 11*s34 + 2*s34*s35 + 3*s34^2 + s34^2*s35 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s36 :|: s34 >= 0, s34 <= z + 1, s35 >= 0, s35 <= z' + 1, s36 >= 0, s36 <= s34, z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z + 1, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 26 + 12*z' + 2*z'*z'' + 3*z'' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 12 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 13 + 4*z + z*z' + 3*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 11 + 4*z + z*z' + 2*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 9 + 11*s5 + 2*s5*z' + 3*s5^2 + s5^2*z' + 3*z + z*z' + 2*z' }-> 1 + s7 :|: s7 >= 0, s7 <= s5, s5 >= 0, s5 <= 1 + (z - 2), s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + s8 :|: s8 >= 0, s8 <= 0, z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ifMinus: runtime: O(n^2) [10 + 4*z' + z'*z'' + 2*z''], size: O(n^1) [z'] minus: runtime: O(n^2) [37 + 12*z + 2*z*z' + 5*z'], size: O(n^1) [z] quot: runtime: O(n^3) [1 + 11*z + 2*z*z' + 3*z^2 + z^2*z'], size: O(n^1) [z] encArg: runtime: O(n^4) [94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4], size: O(n^1) [1 + z] encode_ifMinus: runtime: O(n^4) [299 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 341*z' + z'*z'' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 339*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4], size: O(n^1) [1 + z'] encode_minus: runtime: O(n^4) [244 + 350*z + 2*z*z' + 173*z^2 + 34*z^3 + 3*z^4 + 343*z' + 173*z'^2 + 34*z'^3 + 3*z'^4], size: O(n^1) [1 + z] encode_le: runtime: O(n^4) [191 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 337*z' + 173*z'^2 + 34*z'^3 + 3*z'^4], size: O(1) [2] encode_quot: runtime: O(n^4) [206 + 357*z + 4*z*z' + 177*z^2 + z^2*z' + 34*z^3 + 3*z^4 + 339*z' + 173*z'^2 + 34*z'^3 + 3*z'^4], size: O(n^1) [1 + z] ---------------------------------------- (87) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z ---------------------------------------- (88) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 190 + s11 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s12 :|: s10 >= 0, s10 <= x_1 + 1, s11 >= 0, s11 <= x_2 + 1, s12 >= 0, s12 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 225 + 12*s13 + 2*s13*s14 + 5*s14 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1 + 1, s14 >= 0, s14 <= x_2 + 1, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 292 + 4*s17 + s17*s18 + 2*s18 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 + 336*x_3 + 173*x_3^2 + 34*x_3^3 + 3*x_3^4 }-> s19 :|: s16 >= 0, s16 <= x_1 + 1, s17 >= 0, s17 <= x_2 + 1, s18 >= 0, s18 <= x_3 + 1, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 189 + 11*s20 + 2*s20*s21 + 3*s20^2 + s20^2*s21 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s22 :|: s20 >= 0, s20 <= x_1 + 1, s21 >= 0, s21 <= x_2 + 1, s22 >= 0, s22 <= s20, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -100 + 80*z + 89*z^2 + 22*z^3 + 3*z^4 }-> 1 + s9 :|: s9 >= 0, s9 <= z - 1 + 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 292 + 4*s31 + s31*s32 + 2*s32 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 336*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4 }-> s33 :|: s30 >= 0, s30 <= z + 1, s31 >= 0, s31 <= z' + 1, s32 >= 0, s32 <= z'' + 1, s33 >= 0, s33 <= s31, z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 190 + s24 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s25 :|: s23 >= 0, s23 <= z + 1, s24 >= 0, s24 <= z' + 1, s25 >= 0, s25 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 225 + 12*s27 + 2*s27*s28 + 5*s28 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s29 :|: s27 >= 0, s27 <= z + 1, s28 >= 0, s28 <= z' + 1, s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 189 + 11*s34 + 2*s34*s35 + 3*s34^2 + s34^2*s35 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s36 :|: s34 >= 0, s34 <= z + 1, s35 >= 0, s35 <= z' + 1, s36 >= 0, s36 <= s34, z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z + 1, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 26 + 12*z' + 2*z'*z'' + 3*z'' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 12 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 13 + 4*z + z*z' + 3*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 11 + 4*z + z*z' + 2*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 9 + 11*s5 + 2*s5*z' + 3*s5^2 + s5^2*z' + 3*z + z*z' + 2*z' }-> 1 + s7 :|: s7 >= 0, s7 <= s5, s5 >= 0, s5 <= 1 + (z - 2), s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + s8 :|: s8 >= 0, s8 <= 0, z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ifMinus: runtime: O(n^2) [10 + 4*z' + z'*z'' + 2*z''], size: O(n^1) [z'] minus: runtime: O(n^2) [37 + 12*z + 2*z*z' + 5*z'], size: O(n^1) [z] quot: runtime: O(n^3) [1 + 11*z + 2*z*z' + 3*z^2 + z^2*z'], size: O(n^1) [z] encArg: runtime: O(n^4) [94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4], size: O(n^1) [1 + z] encode_ifMinus: runtime: O(n^4) [299 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 341*z' + z'*z'' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 339*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4], size: O(n^1) [1 + z'] encode_minus: runtime: O(n^4) [244 + 350*z + 2*z*z' + 173*z^2 + 34*z^3 + 3*z^4 + 343*z' + 173*z'^2 + 34*z'^3 + 3*z'^4], size: O(n^1) [1 + z] encode_le: runtime: O(n^4) [191 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 337*z' + 173*z'^2 + 34*z'^3 + 3*z'^4], size: O(1) [2] encode_quot: runtime: O(n^4) [206 + 357*z + 4*z*z' + 177*z^2 + z^2*z' + 34*z^3 + 3*z^4 + 339*z' + 173*z'^2 + 34*z'^3 + 3*z'^4], size: O(n^1) [1 + z] encode_s: runtime: ?, size: O(n^1) [2 + z] ---------------------------------------- (89) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^4) with polynomial bound: 94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 ---------------------------------------- (90) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 190 + s11 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s12 :|: s10 >= 0, s10 <= x_1 + 1, s11 >= 0, s11 <= x_2 + 1, s12 >= 0, s12 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 225 + 12*s13 + 2*s13*s14 + 5*s14 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1 + 1, s14 >= 0, s14 <= x_2 + 1, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 292 + 4*s17 + s17*s18 + 2*s18 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 + 336*x_3 + 173*x_3^2 + 34*x_3^3 + 3*x_3^4 }-> s19 :|: s16 >= 0, s16 <= x_1 + 1, s17 >= 0, s17 <= x_2 + 1, s18 >= 0, s18 <= x_3 + 1, s19 >= 0, s19 <= s17, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 189 + 11*s20 + 2*s20*s21 + 3*s20^2 + s20^2*s21 + 336*x_1 + 173*x_1^2 + 34*x_1^3 + 3*x_1^4 + 336*x_2 + 173*x_2^2 + 34*x_2^3 + 3*x_2^4 }-> s22 :|: s20 >= 0, s20 <= x_1 + 1, s21 >= 0, s21 <= x_2 + 1, s22 >= 0, s22 <= s20, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -100 + 80*z + 89*z^2 + 22*z^3 + 3*z^4 }-> 1 + s9 :|: s9 >= 0, s9 <= z - 1 + 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_ifMinus(z, z', z'') -{ 292 + 4*s31 + s31*s32 + 2*s32 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 336*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4 }-> s33 :|: s30 >= 0, s30 <= z + 1, s31 >= 0, s31 <= z' + 1, s32 >= 0, s32 <= z'' + 1, s33 >= 0, s33 <= s31, z >= 0, z'' >= 0, z' >= 0 encode_ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_le(z, z') -{ 190 + s24 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s25 :|: s23 >= 0, s23 <= z + 1, s24 >= 0, s24 <= z' + 1, s25 >= 0, s25 <= 2, z >= 0, z' >= 0 encode_le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 225 + 12*s27 + 2*s27*s28 + 5*s28 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s29 :|: s27 >= 0, s27 <= z + 1, s28 >= 0, s28 <= z' + 1, s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_quot(z, z') -{ 189 + 11*s34 + 2*s34*s35 + 3*s34^2 + s34^2*s35 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 336*z' + 173*z'^2 + 34*z'^3 + 3*z'^4 }-> s36 :|: s34 >= 0, s34 <= z + 1, s35 >= 0, s35 <= z' + 1, s36 >= 0, s36 <= s34, z >= 0, z' >= 0 encode_quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z + 1, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z'' >= 0, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 26 + 12*z' + 2*z'*z'' + 3*z'' }-> 1 + s4 :|: s4 >= 0, s4 <= z' - 1, z'' >= 0, z = 1, z' - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 2, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 2 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 le(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 minus(z, z') -{ 12 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 13 + 4*z + z*z' + 3*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 2, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 11 + 4*z + z*z' + 2*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1), z' >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z' - 1 >= 0, z = 1 + 0 quot(z, z') -{ 9 + 11*s5 + 2*s5*z' + 3*s5^2 + s5^2*z' + 3*z + z*z' + 2*z' }-> 1 + s7 :|: s7 >= 0, s7 <= s5, s5 >= 0, s5 <= 1 + (z - 2), s'' >= 0, s'' <= 2, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + s8 :|: s8 >= 0, s8 <= 0, z' - 1 >= 0, z - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] le: runtime: O(n^1) [2 + z'], size: O(1) [2] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ifMinus: runtime: O(n^2) [10 + 4*z' + z'*z'' + 2*z''], size: O(n^1) [z'] minus: runtime: O(n^2) [37 + 12*z + 2*z*z' + 5*z'], size: O(n^1) [z] quot: runtime: O(n^3) [1 + 11*z + 2*z*z' + 3*z^2 + z^2*z'], size: O(n^1) [z] encArg: runtime: O(n^4) [94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4], size: O(n^1) [1 + z] encode_ifMinus: runtime: O(n^4) [299 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 341*z' + z'*z'' + 173*z'^2 + 34*z'^3 + 3*z'^4 + 339*z'' + 173*z''^2 + 34*z''^3 + 3*z''^4], size: O(n^1) [1 + z'] encode_minus: runtime: O(n^4) [244 + 350*z + 2*z*z' + 173*z^2 + 34*z^3 + 3*z^4 + 343*z' + 173*z'^2 + 34*z'^3 + 3*z'^4], size: O(n^1) [1 + z] encode_le: runtime: O(n^4) [191 + 336*z + 173*z^2 + 34*z^3 + 3*z^4 + 337*z' + 173*z'^2 + 34*z'^3 + 3*z'^4], size: O(1) [2] encode_quot: runtime: O(n^4) [206 + 357*z + 4*z*z' + 177*z^2 + z^2*z' + 34*z^3 + 3*z^4 + 339*z' + 173*z'^2 + 34*z'^3 + 3*z'^4], size: O(n^1) [1 + z] encode_s: runtime: O(n^4) [94 + 336*z + 173*z^2 + 34*z^3 + 3*z^4], size: O(n^1) [2 + z] ---------------------------------------- (91) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (92) BOUNDS(1, n^4) ---------------------------------------- (93) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (94) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) minus(0', Y) -> 0' minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) ifMinus(true, s(X), Y) -> 0' ifMinus(false, s(X), Y) -> s(minus(X, Y)) quot(0', s(Y)) -> 0' quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) The (relative) TRS S consists of the following rules: encArg(0') -> 0' encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_ifMinus(x_1, x_2, x_3)) -> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_quot(x_1, x_2)) -> quot(encArg(x_1), encArg(x_2)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_ifMinus(x_1, x_2, x_3) -> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) encode_quot(x_1, x_2) -> quot(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (95) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (96) Obligation: Innermost TRS: Rules: le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) minus(0', Y) -> 0' minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) ifMinus(true, s(X), Y) -> 0' ifMinus(false, s(X), Y) -> s(minus(X, Y)) quot(0', s(Y)) -> 0' quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) encArg(0') -> 0' encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_ifMinus(x_1, x_2, x_3)) -> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_quot(x_1, x_2)) -> quot(encArg(x_1), encArg(x_2)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_ifMinus(x_1, x_2, x_3) -> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) encode_quot(x_1, x_2) -> quot(encArg(x_1), encArg(x_2)) Types: le :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot 0' :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot true :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot s :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot false :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot minus :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot ifMinus :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot quot :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encArg :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot cons_le :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot cons_minus :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot cons_ifMinus :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot cons_quot :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_le :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_0 :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_true :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_s :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_false :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_minus :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_ifMinus :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_quot :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot hole_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot1_4 :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4 :: Nat -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot ---------------------------------------- (97) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: le, minus, ifMinus, quot, encArg They will be analysed ascendingly in the following order: le < minus le < encArg minus = ifMinus minus < quot minus < encArg ifMinus < encArg quot < encArg ---------------------------------------- (98) Obligation: Innermost TRS: Rules: le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) minus(0', Y) -> 0' minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) ifMinus(true, s(X), Y) -> 0' ifMinus(false, s(X), Y) -> s(minus(X, Y)) quot(0', s(Y)) -> 0' quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) encArg(0') -> 0' encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_ifMinus(x_1, x_2, x_3)) -> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_quot(x_1, x_2)) -> quot(encArg(x_1), encArg(x_2)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_ifMinus(x_1, x_2, x_3) -> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) encode_quot(x_1, x_2) -> quot(encArg(x_1), encArg(x_2)) Types: le :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot 0' :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot true :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot s :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot false :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot minus :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot ifMinus :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot quot :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encArg :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot cons_le :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot cons_minus :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot cons_ifMinus :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot cons_quot :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_le :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_0 :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_true :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_s :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_false :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_minus :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_ifMinus :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_quot :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot hole_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot1_4 :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4 :: Nat -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot Generator Equations: gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4(0) <=> 0' gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4(+(x, 1)) <=> s(gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4(x)) The following defined symbols remain to be analysed: le, minus, ifMinus, quot, encArg They will be analysed ascendingly in the following order: le < minus le < encArg minus = ifMinus minus < quot minus < encArg ifMinus < encArg quot < encArg ---------------------------------------- (99) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4(n4_4), gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4(n4_4)) -> true, rt in Omega(1 + n4_4) Induction Base: le(gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4(0), gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4(0)) ->_R^Omega(1) true Induction Step: le(gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4(+(n4_4, 1)), gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4(+(n4_4, 1))) ->_R^Omega(1) le(gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4(n4_4), gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4(n4_4)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (100) Complex Obligation (BEST) ---------------------------------------- (101) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) minus(0', Y) -> 0' minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) ifMinus(true, s(X), Y) -> 0' ifMinus(false, s(X), Y) -> s(minus(X, Y)) quot(0', s(Y)) -> 0' quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) encArg(0') -> 0' encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_ifMinus(x_1, x_2, x_3)) -> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_quot(x_1, x_2)) -> quot(encArg(x_1), encArg(x_2)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_ifMinus(x_1, x_2, x_3) -> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) encode_quot(x_1, x_2) -> quot(encArg(x_1), encArg(x_2)) Types: le :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot 0' :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot true :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot s :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot false :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot minus :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot ifMinus :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot quot :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encArg :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot cons_le :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot cons_minus :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot cons_ifMinus :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot cons_quot :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_le :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_0 :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_true :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_s :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_false :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_minus :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_ifMinus :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_quot :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot hole_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot1_4 :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4 :: Nat -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot Generator Equations: gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4(0) <=> 0' gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4(+(x, 1)) <=> s(gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4(x)) The following defined symbols remain to be analysed: le, minus, ifMinus, quot, encArg They will be analysed ascendingly in the following order: le < minus le < encArg minus = ifMinus minus < quot minus < encArg ifMinus < encArg quot < encArg ---------------------------------------- (102) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (103) BOUNDS(n^1, INF) ---------------------------------------- (104) Obligation: Innermost TRS: Rules: le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) minus(0', Y) -> 0' minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) ifMinus(true, s(X), Y) -> 0' ifMinus(false, s(X), Y) -> s(minus(X, Y)) quot(0', s(Y)) -> 0' quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) encArg(0') -> 0' encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_ifMinus(x_1, x_2, x_3)) -> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_quot(x_1, x_2)) -> quot(encArg(x_1), encArg(x_2)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_ifMinus(x_1, x_2, x_3) -> ifMinus(encArg(x_1), encArg(x_2), encArg(x_3)) encode_quot(x_1, x_2) -> quot(encArg(x_1), encArg(x_2)) Types: le :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot 0' :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot true :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot s :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot false :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot minus :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot ifMinus :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot quot :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encArg :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot cons_le :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot cons_minus :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot cons_ifMinus :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot cons_quot :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_le :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_0 :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_true :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_s :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_false :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_minus :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_ifMinus :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot encode_quot :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot hole_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot1_4 :: 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4 :: Nat -> 0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot Lemmas: le(gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4(n4_4), gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4(n4_4)) -> true, rt in Omega(1 + n4_4) Generator Equations: gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4(0) <=> 0' gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4(+(x, 1)) <=> s(gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4(x)) The following defined symbols remain to be analysed: ifMinus, minus, quot, encArg They will be analysed ascendingly in the following order: minus = ifMinus minus < quot minus < encArg ifMinus < encArg quot < encArg ---------------------------------------- (105) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4(n701_4)) -> gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4(n701_4), rt in Omega(0) Induction Base: encArg(gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4(+(n701_4, 1))) ->_R^Omega(0) s(encArg(gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4(n701_4))) ->_IH s(gen_0':true:s:false:cons_le:cons_minus:cons_ifMinus:cons_quot2_4(c702_4)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (106) BOUNDS(1, INF)