/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 44 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsProof [FINISHED, 0 ms] (8) BOUNDS(1, n^1) (9) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxRelTRS (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (12) typed CpxTrs (13) OrderProof [LOWER BOUND(ID), 4 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 183 ms] (16) proven lower bound (17) LowerBoundPropagationProof [FINISHED, 0 ms] (18) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: c(b(a(X))) -> a(a(b(b(c(c(X)))))) a(X) -> e b(X) -> e c(X) -> e S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(e) -> e encArg(cons_c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_e -> e ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: c(b(a(X))) -> a(a(b(b(c(c(X)))))) a(X) -> e b(X) -> e c(X) -> e The (relative) TRS S consists of the following rules: encArg(e) -> e encArg(cons_c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_e -> e Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: c(b(a(X))) -> a(a(b(b(c(c(X)))))) a(X) -> e b(X) -> e c(X) -> e The (relative) TRS S consists of the following rules: encArg(e) -> e encArg(cons_c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_e -> e Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: c(b(a(X))) -> a(a(b(b(c(c(X)))))) a(X) -> e b(X) -> e c(X) -> e encArg(e) -> e encArg(cons_c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_e -> e S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (7) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 3. The certificate found is represented by the following graph. "[45, 46, 47, 48, 49, 50, 51, 52] {(45,46,[c_1|0, a_1|0, b_1|0, encArg_1|0, encode_c_1|0, encode_b_1|0, encode_a_1|0, encode_e|0, e|1]), (45,47,[c_1|1, a_1|1, b_1|1, e|2]), (45,48,[a_1|2, e|3]), (46,46,[e|0, cons_c_1|0, cons_a_1|0, cons_b_1|0]), (47,46,[encArg_1|1, e|1]), (47,47,[c_1|1, a_1|1, b_1|1, e|2]), (47,48,[a_1|2, e|3]), (48,49,[a_1|2, e|3]), (49,50,[b_1|2, e|3]), (50,51,[b_1|2, e|3]), (51,52,[c_1|2, e|3]), (52,47,[c_1|2, e|3]), (52,48,[c_1|2, a_1|2, e|3])}" ---------------------------------------- (8) BOUNDS(1, n^1) ---------------------------------------- (9) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: c(b(a(X))) -> a(a(b(b(c(c(X)))))) a(X) -> e b(X) -> e c(X) -> e The (relative) TRS S consists of the following rules: encArg(e) -> e encArg(cons_c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_e -> e Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (12) Obligation: Innermost TRS: Rules: c(b(a(X))) -> a(a(b(b(c(c(X)))))) a(X) -> e b(X) -> e c(X) -> e encArg(e) -> e encArg(cons_c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_e -> e Types: c :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b b :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b a :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b e :: e:cons_c:cons_a:cons_b encArg :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b cons_c :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b cons_a :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b cons_b :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b encode_c :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b encode_b :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b encode_a :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b encode_e :: e:cons_c:cons_a:cons_b hole_e:cons_c:cons_a:cons_b1_0 :: e:cons_c:cons_a:cons_b gen_e:cons_c:cons_a:cons_b2_0 :: Nat -> e:cons_c:cons_a:cons_b ---------------------------------------- (13) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: c, encArg They will be analysed ascendingly in the following order: c < encArg ---------------------------------------- (14) Obligation: Innermost TRS: Rules: c(b(a(X))) -> a(a(b(b(c(c(X)))))) a(X) -> e b(X) -> e c(X) -> e encArg(e) -> e encArg(cons_c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_e -> e Types: c :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b b :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b a :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b e :: e:cons_c:cons_a:cons_b encArg :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b cons_c :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b cons_a :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b cons_b :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b encode_c :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b encode_b :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b encode_a :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b encode_e :: e:cons_c:cons_a:cons_b hole_e:cons_c:cons_a:cons_b1_0 :: e:cons_c:cons_a:cons_b gen_e:cons_c:cons_a:cons_b2_0 :: Nat -> e:cons_c:cons_a:cons_b Generator Equations: gen_e:cons_c:cons_a:cons_b2_0(0) <=> e gen_e:cons_c:cons_a:cons_b2_0(+(x, 1)) <=> cons_c(gen_e:cons_c:cons_a:cons_b2_0(x)) The following defined symbols remain to be analysed: c, encArg They will be analysed ascendingly in the following order: c < encArg ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_e:cons_c:cons_a:cons_b2_0(n10_0)) -> gen_e:cons_c:cons_a:cons_b2_0(0), rt in Omega(n10_0) Induction Base: encArg(gen_e:cons_c:cons_a:cons_b2_0(0)) ->_R^Omega(0) e Induction Step: encArg(gen_e:cons_c:cons_a:cons_b2_0(+(n10_0, 1))) ->_R^Omega(0) c(encArg(gen_e:cons_c:cons_a:cons_b2_0(n10_0))) ->_IH c(gen_e:cons_c:cons_a:cons_b2_0(0)) ->_R^Omega(1) e We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: c(b(a(X))) -> a(a(b(b(c(c(X)))))) a(X) -> e b(X) -> e c(X) -> e encArg(e) -> e encArg(cons_c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_e -> e Types: c :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b b :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b a :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b e :: e:cons_c:cons_a:cons_b encArg :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b cons_c :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b cons_a :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b cons_b :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b encode_c :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b encode_b :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b encode_a :: e:cons_c:cons_a:cons_b -> e:cons_c:cons_a:cons_b encode_e :: e:cons_c:cons_a:cons_b hole_e:cons_c:cons_a:cons_b1_0 :: e:cons_c:cons_a:cons_b gen_e:cons_c:cons_a:cons_b2_0 :: Nat -> e:cons_c:cons_a:cons_b Generator Equations: gen_e:cons_c:cons_a:cons_b2_0(0) <=> e gen_e:cons_c:cons_a:cons_b2_0(+(x, 1)) <=> cons_c(gen_e:cons_c:cons_a:cons_b2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (17) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (18) BOUNDS(n^1, INF)