/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 65 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsTAProof [FINISHED, 302 ms] (8) BOUNDS(1, n^1) (9) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (10) TRS for Loop Detection (11) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(a) -> f(c(a)) f(c(X)) -> X f(c(a)) -> f(d(b)) f(a) -> f(d(a)) f(d(X)) -> X f(c(b)) -> f(d(a)) e(g(X)) -> e(X) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a) -> a encArg(c(x_1)) -> c(encArg(x_1)) encArg(d(x_1)) -> d(encArg(x_1)) encArg(b) -> b encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_e(x_1)) -> e(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1) -> d(encArg(x_1)) encode_b -> b encode_e(x_1) -> e(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(a) -> f(c(a)) f(c(X)) -> X f(c(a)) -> f(d(b)) f(a) -> f(d(a)) f(d(X)) -> X f(c(b)) -> f(d(a)) e(g(X)) -> e(X) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(c(x_1)) -> c(encArg(x_1)) encArg(d(x_1)) -> d(encArg(x_1)) encArg(b) -> b encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_e(x_1)) -> e(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1) -> d(encArg(x_1)) encode_b -> b encode_e(x_1) -> e(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(a) -> f(c(a)) f(c(X)) -> X f(c(a)) -> f(d(b)) f(a) -> f(d(a)) f(d(X)) -> X f(c(b)) -> f(d(a)) e(g(X)) -> e(X) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(c(x_1)) -> c(encArg(x_1)) encArg(d(x_1)) -> d(encArg(x_1)) encArg(b) -> b encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_e(x_1)) -> e(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1) -> d(encArg(x_1)) encode_b -> b encode_e(x_1) -> e(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a) -> f(c(a)) f(c(X)) -> X f(c(a)) -> f(d(b)) f(a) -> f(d(a)) f(d(X)) -> X f(c(b)) -> f(d(a)) e(g(X)) -> e(X) encArg(a) -> a encArg(c(x_1)) -> c(encArg(x_1)) encArg(d(x_1)) -> d(encArg(x_1)) encArg(b) -> b encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_e(x_1)) -> e(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1) -> d(encArg(x_1)) encode_b -> b encode_e(x_1) -> e(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (7) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 3. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] transitions: a0() -> 0 c0(0) -> 0 d0(0) -> 0 b0() -> 0 g0(0) -> 0 cons_f0(0) -> 0 cons_e0(0) -> 0 f0(0) -> 1 e0(0) -> 2 encArg0(0) -> 3 encode_f0(0) -> 4 encode_a0() -> 5 encode_c0(0) -> 6 encode_d0(0) -> 7 encode_b0() -> 8 encode_e0(0) -> 9 encode_g0(0) -> 10 a1() -> 12 c1(12) -> 11 f1(11) -> 1 b1() -> 14 d1(14) -> 13 f1(13) -> 1 a1() -> 16 d1(16) -> 15 f1(15) -> 1 e1(0) -> 2 a1() -> 3 encArg1(0) -> 17 c1(17) -> 3 encArg1(0) -> 18 d1(18) -> 3 b1() -> 3 encArg1(0) -> 19 g1(19) -> 3 encArg1(0) -> 20 f1(20) -> 3 encArg1(0) -> 21 e1(21) -> 3 f1(20) -> 4 a1() -> 5 c1(17) -> 6 d1(18) -> 7 b1() -> 8 e1(21) -> 9 g1(19) -> 10 b2() -> 23 d2(23) -> 22 f2(22) -> 1 a1() -> 17 a1() -> 18 a1() -> 19 a1() -> 20 a1() -> 21 c1(17) -> 17 c1(17) -> 18 c1(17) -> 19 c1(17) -> 20 c1(17) -> 21 d1(18) -> 17 d1(18) -> 18 d1(18) -> 19 d1(18) -> 20 d1(18) -> 21 b1() -> 17 b1() -> 18 b1() -> 19 b1() -> 20 b1() -> 21 g1(19) -> 17 g1(19) -> 18 g1(19) -> 19 g1(19) -> 20 g1(19) -> 21 f1(20) -> 17 f1(20) -> 18 f1(20) -> 19 f1(20) -> 20 f1(20) -> 21 e1(21) -> 17 e1(21) -> 18 e1(21) -> 19 e1(21) -> 20 e1(21) -> 21 a2() -> 25 c2(25) -> 24 f2(24) -> 3 f2(24) -> 4 f2(24) -> 17 f2(24) -> 18 f2(24) -> 19 f2(24) -> 20 f2(24) -> 21 f2(22) -> 3 f2(22) -> 4 f2(22) -> 17 a2() -> 27 d2(27) -> 26 f2(26) -> 3 f2(26) -> 4 f2(26) -> 17 e2(19) -> 3 e2(19) -> 9 e2(19) -> 17 b3() -> 29 d3(29) -> 28 f3(28) -> 3 f3(28) -> 4 f3(28) -> 17 0 -> 1 12 -> 1 14 -> 1 16 -> 1 17 -> 3 17 -> 4 17 -> 18 17 -> 19 17 -> 20 17 -> 21 18 -> 3 18 -> 4 18 -> 17 23 -> 1 23 -> 3 23 -> 4 23 -> 17 27 -> 3 27 -> 4 27 -> 17 25 -> 3 25 -> 4 25 -> 17 29 -> 3 29 -> 4 29 -> 17 ---------------------------------------- (8) BOUNDS(1, n^1) ---------------------------------------- (9) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (10) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(a) -> f(c(a)) f(c(X)) -> X f(c(a)) -> f(d(b)) f(a) -> f(d(a)) f(d(X)) -> X f(c(b)) -> f(d(a)) e(g(X)) -> e(X) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(c(x_1)) -> c(encArg(x_1)) encArg(d(x_1)) -> d(encArg(x_1)) encArg(b) -> b encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_e(x_1)) -> e(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1) -> d(encArg(x_1)) encode_b -> b encode_e(x_1) -> e(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (11) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence e(g(X)) ->^+ e(X) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [X / g(X)]. The result substitution is [ ]. ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(a) -> f(c(a)) f(c(X)) -> X f(c(a)) -> f(d(b)) f(a) -> f(d(a)) f(d(X)) -> X f(c(b)) -> f(d(a)) e(g(X)) -> e(X) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(c(x_1)) -> c(encArg(x_1)) encArg(d(x_1)) -> d(encArg(x_1)) encArg(b) -> b encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_e(x_1)) -> e(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1) -> d(encArg(x_1)) encode_b -> b encode_e(x_1) -> e(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(a) -> f(c(a)) f(c(X)) -> X f(c(a)) -> f(d(b)) f(a) -> f(d(a)) f(d(X)) -> X f(c(b)) -> f(d(a)) e(g(X)) -> e(X) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(c(x_1)) -> c(encArg(x_1)) encArg(d(x_1)) -> d(encArg(x_1)) encArg(b) -> b encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_e(x_1)) -> e(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1) -> d(encArg(x_1)) encode_b -> b encode_e(x_1) -> e(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST