/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 327 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: and(false, false) -> false and(true, false) -> false and(false, true) -> false and(true, true) -> true eq(nil, nil) -> true eq(cons(T, L), nil) -> false eq(nil, cons(T, L)) -> false eq(cons(T, L), cons(Tp, Lp)) -> and(eq(T, Tp), eq(L, Lp)) eq(var(L), var(Lp)) -> eq(L, Lp) eq(var(L), apply(T, S)) -> false eq(var(L), lambda(X, T)) -> false eq(apply(T, S), var(L)) -> false eq(apply(T, S), apply(Tp, Sp)) -> and(eq(T, Tp), eq(S, Sp)) eq(apply(T, S), lambda(X, Tp)) -> false eq(lambda(X, T), var(L)) -> false eq(lambda(X, T), apply(Tp, Sp)) -> false eq(lambda(X, T), lambda(Xp, Tp)) -> and(eq(T, Tp), eq(X, Xp)) if(true, var(K), var(L)) -> var(K) if(false, var(K), var(L)) -> var(L) ren(var(L), var(K), var(Lp)) -> if(eq(L, Lp), var(K), var(Lp)) ren(X, Y, apply(T, S)) -> apply(ren(X, Y, T), ren(X, Y, S)) ren(X, Y, lambda(Z, T)) -> lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(false) -> false encArg(true) -> true encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(var(x_1)) -> var(encArg(x_1)) encArg(apply(x_1, x_2)) -> apply(encArg(x_1), encArg(x_2)) encArg(lambda(x_1, x_2)) -> lambda(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_ren(x_1, x_2, x_3)) -> ren(encArg(x_1), encArg(x_2), encArg(x_3)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_false -> false encode_true -> true encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_var(x_1) -> var(encArg(x_1)) encode_apply(x_1, x_2) -> apply(encArg(x_1), encArg(x_2)) encode_lambda(x_1, x_2) -> lambda(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_ren(x_1, x_2, x_3) -> ren(encArg(x_1), encArg(x_2), encArg(x_3)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: and(false, false) -> false and(true, false) -> false and(false, true) -> false and(true, true) -> true eq(nil, nil) -> true eq(cons(T, L), nil) -> false eq(nil, cons(T, L)) -> false eq(cons(T, L), cons(Tp, Lp)) -> and(eq(T, Tp), eq(L, Lp)) eq(var(L), var(Lp)) -> eq(L, Lp) eq(var(L), apply(T, S)) -> false eq(var(L), lambda(X, T)) -> false eq(apply(T, S), var(L)) -> false eq(apply(T, S), apply(Tp, Sp)) -> and(eq(T, Tp), eq(S, Sp)) eq(apply(T, S), lambda(X, Tp)) -> false eq(lambda(X, T), var(L)) -> false eq(lambda(X, T), apply(Tp, Sp)) -> false eq(lambda(X, T), lambda(Xp, Tp)) -> and(eq(T, Tp), eq(X, Xp)) if(true, var(K), var(L)) -> var(K) if(false, var(K), var(L)) -> var(L) ren(var(L), var(K), var(Lp)) -> if(eq(L, Lp), var(K), var(Lp)) ren(X, Y, apply(T, S)) -> apply(ren(X, Y, T), ren(X, Y, S)) ren(X, Y, lambda(Z, T)) -> lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T))) The (relative) TRS S consists of the following rules: encArg(false) -> false encArg(true) -> true encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(var(x_1)) -> var(encArg(x_1)) encArg(apply(x_1, x_2)) -> apply(encArg(x_1), encArg(x_2)) encArg(lambda(x_1, x_2)) -> lambda(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_ren(x_1, x_2, x_3)) -> ren(encArg(x_1), encArg(x_2), encArg(x_3)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_false -> false encode_true -> true encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_var(x_1) -> var(encArg(x_1)) encode_apply(x_1, x_2) -> apply(encArg(x_1), encArg(x_2)) encode_lambda(x_1, x_2) -> lambda(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_ren(x_1, x_2, x_3) -> ren(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: and(false, false) -> false and(true, false) -> false and(false, true) -> false and(true, true) -> true eq(nil, nil) -> true eq(cons(T, L), nil) -> false eq(nil, cons(T, L)) -> false eq(cons(T, L), cons(Tp, Lp)) -> and(eq(T, Tp), eq(L, Lp)) eq(var(L), var(Lp)) -> eq(L, Lp) eq(var(L), apply(T, S)) -> false eq(var(L), lambda(X, T)) -> false eq(apply(T, S), var(L)) -> false eq(apply(T, S), apply(Tp, Sp)) -> and(eq(T, Tp), eq(S, Sp)) eq(apply(T, S), lambda(X, Tp)) -> false eq(lambda(X, T), var(L)) -> false eq(lambda(X, T), apply(Tp, Sp)) -> false eq(lambda(X, T), lambda(Xp, Tp)) -> and(eq(T, Tp), eq(X, Xp)) if(true, var(K), var(L)) -> var(K) if(false, var(K), var(L)) -> var(L) ren(var(L), var(K), var(Lp)) -> if(eq(L, Lp), var(K), var(Lp)) ren(X, Y, apply(T, S)) -> apply(ren(X, Y, T), ren(X, Y, S)) ren(X, Y, lambda(Z, T)) -> lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T))) The (relative) TRS S consists of the following rules: encArg(false) -> false encArg(true) -> true encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(var(x_1)) -> var(encArg(x_1)) encArg(apply(x_1, x_2)) -> apply(encArg(x_1), encArg(x_2)) encArg(lambda(x_1, x_2)) -> lambda(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_ren(x_1, x_2, x_3)) -> ren(encArg(x_1), encArg(x_2), encArg(x_3)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_false -> false encode_true -> true encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_var(x_1) -> var(encArg(x_1)) encode_apply(x_1, x_2) -> apply(encArg(x_1), encArg(x_2)) encode_lambda(x_1, x_2) -> lambda(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_ren(x_1, x_2, x_3) -> ren(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: and(false, false) -> false and(true, false) -> false and(false, true) -> false and(true, true) -> true eq(nil, nil) -> true eq(cons(T, L), nil) -> false eq(nil, cons(T, L)) -> false eq(cons(T, L), cons(Tp, Lp)) -> and(eq(T, Tp), eq(L, Lp)) eq(var(L), var(Lp)) -> eq(L, Lp) eq(var(L), apply(T, S)) -> false eq(var(L), lambda(X, T)) -> false eq(apply(T, S), var(L)) -> false eq(apply(T, S), apply(Tp, Sp)) -> and(eq(T, Tp), eq(S, Sp)) eq(apply(T, S), lambda(X, Tp)) -> false eq(lambda(X, T), var(L)) -> false eq(lambda(X, T), apply(Tp, Sp)) -> false eq(lambda(X, T), lambda(Xp, Tp)) -> and(eq(T, Tp), eq(X, Xp)) if(true, var(K), var(L)) -> var(K) if(false, var(K), var(L)) -> var(L) ren(var(L), var(K), var(Lp)) -> if(eq(L, Lp), var(K), var(Lp)) ren(X, Y, apply(T, S)) -> apply(ren(X, Y, T), ren(X, Y, S)) ren(X, Y, lambda(Z, T)) -> lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T))) The (relative) TRS S consists of the following rules: encArg(false) -> false encArg(true) -> true encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(var(x_1)) -> var(encArg(x_1)) encArg(apply(x_1, x_2)) -> apply(encArg(x_1), encArg(x_2)) encArg(lambda(x_1, x_2)) -> lambda(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_ren(x_1, x_2, x_3)) -> ren(encArg(x_1), encArg(x_2), encArg(x_3)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_false -> false encode_true -> true encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_var(x_1) -> var(encArg(x_1)) encode_apply(x_1, x_2) -> apply(encArg(x_1), encArg(x_2)) encode_lambda(x_1, x_2) -> lambda(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_ren(x_1, x_2, x_3) -> ren(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence eq(lambda(X, T), lambda(Xp, Tp)) ->^+ and(eq(T, Tp), eq(X, Xp)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [T / lambda(X, T), Tp / lambda(Xp, Tp)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: and(false, false) -> false and(true, false) -> false and(false, true) -> false and(true, true) -> true eq(nil, nil) -> true eq(cons(T, L), nil) -> false eq(nil, cons(T, L)) -> false eq(cons(T, L), cons(Tp, Lp)) -> and(eq(T, Tp), eq(L, Lp)) eq(var(L), var(Lp)) -> eq(L, Lp) eq(var(L), apply(T, S)) -> false eq(var(L), lambda(X, T)) -> false eq(apply(T, S), var(L)) -> false eq(apply(T, S), apply(Tp, Sp)) -> and(eq(T, Tp), eq(S, Sp)) eq(apply(T, S), lambda(X, Tp)) -> false eq(lambda(X, T), var(L)) -> false eq(lambda(X, T), apply(Tp, Sp)) -> false eq(lambda(X, T), lambda(Xp, Tp)) -> and(eq(T, Tp), eq(X, Xp)) if(true, var(K), var(L)) -> var(K) if(false, var(K), var(L)) -> var(L) ren(var(L), var(K), var(Lp)) -> if(eq(L, Lp), var(K), var(Lp)) ren(X, Y, apply(T, S)) -> apply(ren(X, Y, T), ren(X, Y, S)) ren(X, Y, lambda(Z, T)) -> lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T))) The (relative) TRS S consists of the following rules: encArg(false) -> false encArg(true) -> true encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(var(x_1)) -> var(encArg(x_1)) encArg(apply(x_1, x_2)) -> apply(encArg(x_1), encArg(x_2)) encArg(lambda(x_1, x_2)) -> lambda(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_ren(x_1, x_2, x_3)) -> ren(encArg(x_1), encArg(x_2), encArg(x_3)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_false -> false encode_true -> true encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_var(x_1) -> var(encArg(x_1)) encode_apply(x_1, x_2) -> apply(encArg(x_1), encArg(x_2)) encode_lambda(x_1, x_2) -> lambda(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_ren(x_1, x_2, x_3) -> ren(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: and(false, false) -> false and(true, false) -> false and(false, true) -> false and(true, true) -> true eq(nil, nil) -> true eq(cons(T, L), nil) -> false eq(nil, cons(T, L)) -> false eq(cons(T, L), cons(Tp, Lp)) -> and(eq(T, Tp), eq(L, Lp)) eq(var(L), var(Lp)) -> eq(L, Lp) eq(var(L), apply(T, S)) -> false eq(var(L), lambda(X, T)) -> false eq(apply(T, S), var(L)) -> false eq(apply(T, S), apply(Tp, Sp)) -> and(eq(T, Tp), eq(S, Sp)) eq(apply(T, S), lambda(X, Tp)) -> false eq(lambda(X, T), var(L)) -> false eq(lambda(X, T), apply(Tp, Sp)) -> false eq(lambda(X, T), lambda(Xp, Tp)) -> and(eq(T, Tp), eq(X, Xp)) if(true, var(K), var(L)) -> var(K) if(false, var(K), var(L)) -> var(L) ren(var(L), var(K), var(Lp)) -> if(eq(L, Lp), var(K), var(Lp)) ren(X, Y, apply(T, S)) -> apply(ren(X, Y, T), ren(X, Y, S)) ren(X, Y, lambda(Z, T)) -> lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T))) The (relative) TRS S consists of the following rules: encArg(false) -> false encArg(true) -> true encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(var(x_1)) -> var(encArg(x_1)) encArg(apply(x_1, x_2)) -> apply(encArg(x_1), encArg(x_2)) encArg(lambda(x_1, x_2)) -> lambda(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_ren(x_1, x_2, x_3)) -> ren(encArg(x_1), encArg(x_2), encArg(x_3)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_false -> false encode_true -> true encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_var(x_1) -> var(encArg(x_1)) encode_apply(x_1, x_2) -> apply(encArg(x_1), encArg(x_2)) encode_lambda(x_1, x_2) -> lambda(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_ren(x_1, x_2, x_3) -> ren(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST