/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 189 ms] (4) CpxRelTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) CompleteCoflocoProof [FINISHED, 446 ms] (14) BOUNDS(1, n^2) (15) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRelTRS (17) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (18) typed CpxTrs (19) OrderProof [LOWER BOUND(ID), 0 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 501 ms] (22) BEST (23) proven lower bound (24) LowerBoundPropagationProof [FINISHED, 0 ms] (25) BOUNDS(n^1, INF) (26) typed CpxTrs (27) RewriteLemmaProof [LOWER BOUND(ID), 142 ms] (28) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X) u21(ackout(X), Y) -> u22(ackin(Y, X)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(s(x_1)) -> s(encArg(x_1)) encArg(ackout(x_1)) -> ackout(encArg(x_1)) encArg(u22(x_1)) -> u22(encArg(x_1)) encArg(cons_ackin(x_1, x_2)) -> ackin(encArg(x_1), encArg(x_2)) encArg(cons_u21(x_1, x_2)) -> u21(encArg(x_1), encArg(x_2)) encode_ackin(x_1, x_2) -> ackin(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_u21(x_1, x_2) -> u21(encArg(x_1), encArg(x_2)) encode_ackout(x_1) -> ackout(encArg(x_1)) encode_u22(x_1) -> u22(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X) u21(ackout(X), Y) -> u22(ackin(Y, X)) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(ackout(x_1)) -> ackout(encArg(x_1)) encArg(u22(x_1)) -> u22(encArg(x_1)) encArg(cons_ackin(x_1, x_2)) -> ackin(encArg(x_1), encArg(x_2)) encArg(cons_u21(x_1, x_2)) -> u21(encArg(x_1), encArg(x_2)) encode_ackin(x_1, x_2) -> ackin(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_u21(x_1, x_2) -> u21(encArg(x_1), encArg(x_2)) encode_ackout(x_1) -> ackout(encArg(x_1)) encode_u22(x_1) -> u22(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X) u21(ackout(X), Y) -> u22(ackin(Y, X)) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(ackout(x_1)) -> ackout(encArg(x_1)) encArg(u22(x_1)) -> u22(encArg(x_1)) encArg(cons_ackin(x_1, x_2)) -> ackin(encArg(x_1), encArg(x_2)) encArg(cons_u21(x_1, x_2)) -> u21(encArg(x_1), encArg(x_2)) encode_ackin(x_1, x_2) -> ackin(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_u21(x_1, x_2) -> u21(encArg(x_1), encArg(x_2)) encode_ackout(x_1) -> ackout(encArg(x_1)) encode_u22(x_1) -> u22(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X) [1] u21(ackout(X), Y) -> u22(ackin(Y, X)) [1] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(ackout(x_1)) -> ackout(encArg(x_1)) [0] encArg(u22(x_1)) -> u22(encArg(x_1)) [0] encArg(cons_ackin(x_1, x_2)) -> ackin(encArg(x_1), encArg(x_2)) [0] encArg(cons_u21(x_1, x_2)) -> u21(encArg(x_1), encArg(x_2)) [0] encode_ackin(x_1, x_2) -> ackin(encArg(x_1), encArg(x_2)) [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_u21(x_1, x_2) -> u21(encArg(x_1), encArg(x_2)) [0] encode_ackout(x_1) -> ackout(encArg(x_1)) [0] encode_u22(x_1) -> u22(encArg(x_1)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X) [1] u21(ackout(X), Y) -> u22(ackin(Y, X)) [1] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(ackout(x_1)) -> ackout(encArg(x_1)) [0] encArg(u22(x_1)) -> u22(encArg(x_1)) [0] encArg(cons_ackin(x_1, x_2)) -> ackin(encArg(x_1), encArg(x_2)) [0] encArg(cons_u21(x_1, x_2)) -> u21(encArg(x_1), encArg(x_2)) [0] encode_ackin(x_1, x_2) -> ackin(encArg(x_1), encArg(x_2)) [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_u21(x_1, x_2) -> u21(encArg(x_1), encArg(x_2)) [0] encode_ackout(x_1) -> ackout(encArg(x_1)) [0] encode_u22(x_1) -> u22(encArg(x_1)) [0] The TRS has the following type information: ackin :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 s :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 u21 :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 ackout :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 u22 :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encArg :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 cons_ackin :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 cons_u21 :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encode_ackin :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encode_s :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encode_u21 :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encode_ackout :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encode_u22 :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: encArg(v0) -> null_encArg [0] encode_ackin(v0, v1) -> null_encode_ackin [0] encode_s(v0) -> null_encode_s [0] encode_u21(v0, v1) -> null_encode_u21 [0] encode_ackout(v0) -> null_encode_ackout [0] encode_u22(v0) -> null_encode_u22 [0] ackin(v0, v1) -> null_ackin [0] u21(v0, v1) -> null_u21 [0] And the following fresh constants: null_encArg, null_encode_ackin, null_encode_s, null_encode_u21, null_encode_ackout, null_encode_u22, null_ackin, null_u21 ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X) [1] u21(ackout(X), Y) -> u22(ackin(Y, X)) [1] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(ackout(x_1)) -> ackout(encArg(x_1)) [0] encArg(u22(x_1)) -> u22(encArg(x_1)) [0] encArg(cons_ackin(x_1, x_2)) -> ackin(encArg(x_1), encArg(x_2)) [0] encArg(cons_u21(x_1, x_2)) -> u21(encArg(x_1), encArg(x_2)) [0] encode_ackin(x_1, x_2) -> ackin(encArg(x_1), encArg(x_2)) [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_u21(x_1, x_2) -> u21(encArg(x_1), encArg(x_2)) [0] encode_ackout(x_1) -> ackout(encArg(x_1)) [0] encode_u22(x_1) -> u22(encArg(x_1)) [0] encArg(v0) -> null_encArg [0] encode_ackin(v0, v1) -> null_encode_ackin [0] encode_s(v0) -> null_encode_s [0] encode_u21(v0, v1) -> null_encode_u21 [0] encode_ackout(v0) -> null_encode_ackout [0] encode_u22(v0) -> null_encode_u22 [0] ackin(v0, v1) -> null_ackin [0] u21(v0, v1) -> null_u21 [0] The TRS has the following type information: ackin :: s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 -> s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 -> s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 s :: s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 -> s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 u21 :: s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 -> s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 -> s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 ackout :: s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 -> s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 u22 :: s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 -> s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 encArg :: s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 -> s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 cons_ackin :: s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 -> s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 -> s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 cons_u21 :: s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 -> s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 -> s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 encode_ackin :: s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 -> s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 -> s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 encode_s :: s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 -> s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 encode_u21 :: s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 -> s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 -> s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 encode_ackout :: s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 -> s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 encode_u22 :: s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 -> s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 null_encArg :: s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 null_encode_ackin :: s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 null_encode_s :: s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 null_encode_u21 :: s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 null_encode_ackout :: s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 null_encode_u22 :: s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 null_ackin :: s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 null_u21 :: s:ackout:u22:cons_ackin:cons_u21:null_encArg:null_encode_ackin:null_encode_s:null_encode_u21:null_encode_ackout:null_encode_u22:null_ackin:null_u21 Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: null_encArg => 0 null_encode_ackin => 0 null_encode_s => 0 null_encode_u21 => 0 null_encode_ackout => 0 null_encode_u22 => 0 null_ackin => 0 null_u21 => 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: ackin(z, z') -{ 1 }-> u21(ackin(1 + X, Y), X) :|: z = 1 + X, Y >= 0, z' = 1 + Y, X >= 0 ackin(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encArg(z) -{ 0 }-> u21(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> ackin(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_ackin(z, z') -{ 0 }-> ackin(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_ackin(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_ackout(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_ackout(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 encode_s(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_s(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 encode_u21(z, z') -{ 0 }-> u21(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_u21(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_u22(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_u22(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 u21(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 u21(z, z') -{ 1 }-> 1 + ackin(Y, X) :|: z = 1 + X, z' = Y, Y >= 0, X >= 0 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (13) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V1, V),0,[ackin(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V),0,[u21(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V),0,[encArg(V1, Out)],[V1 >= 0]). eq(start(V1, V),0,[fun(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V),0,[fun1(V1, Out)],[V1 >= 0]). eq(start(V1, V),0,[fun2(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V),0,[fun3(V1, Out)],[V1 >= 0]). eq(start(V1, V),0,[fun4(V1, Out)],[V1 >= 0]). eq(ackin(V1, V, Out),1,[ackin(1 + X1, Y1, Ret0),u21(Ret0, X1, Ret)],[Out = Ret,V1 = 1 + X1,Y1 >= 0,V = 1 + Y1,X1 >= 0]). eq(u21(V1, V, Out),1,[ackin(Y2, X2, Ret1)],[Out = 1 + Ret1,V1 = 1 + X2,V = Y2,Y2 >= 0,X2 >= 0]). eq(encArg(V1, Out),0,[encArg(V2, Ret11)],[Out = 1 + Ret11,V1 = 1 + V2,V2 >= 0]). eq(encArg(V1, Out),0,[encArg(V3, Ret01),encArg(V4, Ret12),ackin(Ret01, Ret12, Ret2)],[Out = Ret2,V3 >= 0,V1 = 1 + V3 + V4,V4 >= 0]). eq(encArg(V1, Out),0,[encArg(V5, Ret02),encArg(V6, Ret13),u21(Ret02, Ret13, Ret3)],[Out = Ret3,V5 >= 0,V1 = 1 + V5 + V6,V6 >= 0]). eq(fun(V1, V, Out),0,[encArg(V8, Ret03),encArg(V7, Ret14),ackin(Ret03, Ret14, Ret4)],[Out = Ret4,V8 >= 0,V7 >= 0,V1 = V8,V = V7]). eq(fun1(V1, Out),0,[encArg(V9, Ret15)],[Out = 1 + Ret15,V9 >= 0,V1 = V9]). eq(fun2(V1, V, Out),0,[encArg(V11, Ret04),encArg(V10, Ret16),u21(Ret04, Ret16, Ret5)],[Out = Ret5,V11 >= 0,V10 >= 0,V1 = V11,V = V10]). eq(fun3(V1, Out),0,[encArg(V12, Ret17)],[Out = 1 + Ret17,V12 >= 0,V1 = V12]). eq(fun4(V1, Out),0,[encArg(V13, Ret18)],[Out = 1 + Ret18,V13 >= 0,V1 = V13]). eq(encArg(V1, Out),0,[],[Out = 0,V14 >= 0,V1 = V14]). eq(fun(V1, V, Out),0,[],[Out = 0,V16 >= 0,V15 >= 0,V1 = V16,V = V15]). eq(fun1(V1, Out),0,[],[Out = 0,V17 >= 0,V1 = V17]). eq(fun2(V1, V, Out),0,[],[Out = 0,V18 >= 0,V19 >= 0,V1 = V18,V = V19]). eq(fun3(V1, Out),0,[],[Out = 0,V20 >= 0,V1 = V20]). eq(fun4(V1, Out),0,[],[Out = 0,V21 >= 0,V1 = V21]). eq(ackin(V1, V, Out),0,[],[Out = 0,V22 >= 0,V23 >= 0,V1 = V22,V = V23]). eq(u21(V1, V, Out),0,[],[Out = 0,V24 >= 0,V25 >= 0,V1 = V24,V = V25]). input_output_vars(ackin(V1,V,Out),[V1,V],[Out]). input_output_vars(u21(V1,V,Out),[V1,V],[Out]). input_output_vars(encArg(V1,Out),[V1],[Out]). input_output_vars(fun(V1,V,Out),[V1,V],[Out]). input_output_vars(fun1(V1,Out),[V1],[Out]). input_output_vars(fun2(V1,V,Out),[V1,V],[Out]). input_output_vars(fun3(V1,Out),[V1],[Out]). input_output_vars(fun4(V1,Out),[V1],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive [multiple] : [ackin/3,u21/3] 1. recursive [non_tail,multiple] : [encArg/2] 2. non_recursive : [fun/3] 3. non_recursive : [fun1/2] 4. non_recursive : [fun2/3] 5. non_recursive : [fun3/2] 6. non_recursive : [fun4/2] 7. non_recursive : [start/2] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into ackin/3 1. SCC is partially evaluated into encArg/2 2. SCC is partially evaluated into fun/3 3. SCC is partially evaluated into fun1/2 4. SCC is partially evaluated into fun2/3 5. SCC is partially evaluated into fun3/2 6. SCC is partially evaluated into fun4/2 7. SCC is partially evaluated into start/2 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations ackin/3 * CE 12 is refined into CE [29] * CE 11 is refined into CE [30] * CE 10 is refined into CE [31] ### Cost equations --> "Loop" of ackin/3 * CEs [31] --> Loop 14 * CEs [30] --> Loop 15 * CEs [29] --> Loop 16 ### Ranking functions of CR ackin(V1,V,Out) #### Partial ranking functions of CR ackin(V1,V,Out) * Partial RF of phase [14,15]: - RF of loop [14:1,15:1]: V depends on loops [15:2] - RF of loop [15:2]: V1 ### Specialization of cost equations encArg/2 * CE 17 is refined into CE [32] * CE 14 is refined into CE [33] * CE 13 is refined into CE [34] * CE 16 is refined into CE [35] * CE 15 is refined into CE [36] ### Cost equations --> "Loop" of encArg/2 * CEs [36] --> Loop 17 * CEs [33] --> Loop 18 * CEs [34,35] --> Loop 19 * CEs [32] --> Loop 20 ### Ranking functions of CR encArg(V1,Out) * RF of phase [17,18,19]: [V1] #### Partial ranking functions of CR encArg(V1,Out) * Partial RF of phase [17,18,19]: - RF of loop [17:1,18:1,18:2,19:1,19:2]: V1 ### Specialization of cost equations fun/3 * CE 18 is refined into CE [37,38,39,40] * CE 19 is refined into CE [41] ### Cost equations --> "Loop" of fun/3 * CEs [37,38,39,40,41] --> Loop 21 ### Ranking functions of CR fun(V1,V,Out) #### Partial ranking functions of CR fun(V1,V,Out) ### Specialization of cost equations fun1/2 * CE 20 is refined into CE [42,43] * CE 21 is refined into CE [44] ### Cost equations --> "Loop" of fun1/2 * CEs [43] --> Loop 22 * CEs [42] --> Loop 23 * CEs [44] --> Loop 24 ### Ranking functions of CR fun1(V1,Out) #### Partial ranking functions of CR fun1(V1,Out) ### Specialization of cost equations fun2/3 * CE 22 is refined into CE [45,46,47,48] * CE 23 is refined into CE [49,50] * CE 24 is refined into CE [51] ### Cost equations --> "Loop" of fun2/3 * CEs [49,50] --> Loop 25 * CEs [45,46,47,48,51] --> Loop 26 ### Ranking functions of CR fun2(V1,V,Out) #### Partial ranking functions of CR fun2(V1,V,Out) ### Specialization of cost equations fun3/2 * CE 25 is refined into CE [52,53] * CE 26 is refined into CE [54] ### Cost equations --> "Loop" of fun3/2 * CEs [53] --> Loop 27 * CEs [52] --> Loop 28 * CEs [54] --> Loop 29 ### Ranking functions of CR fun3(V1,Out) #### Partial ranking functions of CR fun3(V1,Out) ### Specialization of cost equations fun4/2 * CE 27 is refined into CE [55,56] * CE 28 is refined into CE [57] ### Cost equations --> "Loop" of fun4/2 * CEs [56] --> Loop 30 * CEs [55] --> Loop 31 * CEs [57] --> Loop 32 ### Ranking functions of CR fun4(V1,Out) #### Partial ranking functions of CR fun4(V1,Out) ### Specialization of cost equations start/2 * CE 1 is refined into CE [58] * CE 2 is refined into CE [59] * CE 3 is refined into CE [60] * CE 4 is refined into CE [61,62] * CE 5 is refined into CE [63] * CE 6 is refined into CE [64,65,66] * CE 7 is refined into CE [67,68] * CE 8 is refined into CE [69,70,71] * CE 9 is refined into CE [72,73,74] ### Cost equations --> "Loop" of start/2 * CEs [58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74] --> Loop 33 ### Ranking functions of CR start(V1,V) #### Partial ranking functions of CR start(V1,V) Computing Bounds ===================================== #### Cost of chains of ackin(V1,V,Out): * Chain [16]: 0 with precondition: [Out=0,V1>=0,V>=0] * Chain [multiple([14,15],[[16]])]: 1*it(14)+0 Such that:it(14) =< V with precondition: [Out=0,V1>=1,V>=1] #### Cost of chains of encArg(V1,Out): * Chain [20]: 0 with precondition: [Out=0,V1>=0] * Chain [multiple([17,18,19],[[20]])]: 1*it(18)+1*s(6)+1*s(7)+0 Such that:aux(7) =< V1 aux(8) =< 2/3*V1 it(17) =< aux(7) it(18) =< aux(7) it(18) =< aux(8) aux(3) =< aux(7) s(7) =< it(17)*aux(3) s(6) =< it(18)*aux(7) with precondition: [V1>=1,Out>=0,V1>=Out] #### Cost of chains of fun(V1,V,Out): * Chain [21]: 2*s(12)+2*s(14)+2*s(15)+2*s(16)+2*s(20)+2*s(22)+2*s(23)+0 Such that:aux(11) =< V1 aux(12) =< 2/3*V1 aux(13) =< V aux(14) =< 2/3*V s(20) =< aux(11) s(20) =< aux(12) s(21) =< aux(11) s(22) =< aux(11)*s(21) s(23) =< s(20)*aux(11) s(16) =< aux(13) s(12) =< aux(13) s(12) =< aux(14) s(13) =< aux(13) s(14) =< aux(13)*s(13) s(15) =< s(12)*aux(13) with precondition: [Out=0,V1>=0,V>=0] #### Cost of chains of fun1(V1,Out): * Chain [24]: 0 with precondition: [Out=0,V1>=0] * Chain [23]: 0 with precondition: [Out=1,V1>=0] * Chain [22]: 1*s(43)+1*s(45)+1*s(46)+0 Such that:s(40) =< V1 s(41) =< 2/3*V1 s(43) =< s(40) s(43) =< s(41) s(44) =< s(40) s(45) =< s(40)*s(44) s(46) =< s(43)*s(40) with precondition: [V1>=1,Out>=1,V1+1>=Out] #### Cost of chains of fun2(V1,V,Out): * Chain [26]: 2*s(50)+2*s(52)+2*s(53)+2*s(57)+2*s(59)+2*s(60)+0 Such that:aux(15) =< V1 aux(16) =< 2/3*V1 aux(17) =< V aux(18) =< 2/3*V s(57) =< aux(15) s(57) =< aux(16) s(58) =< aux(15) s(59) =< aux(15)*s(58) s(60) =< s(57)*aux(15) s(50) =< aux(17) s(50) =< aux(18) s(51) =< aux(17) s(52) =< aux(17)*s(51) s(53) =< s(50)*aux(17) with precondition: [Out=0,V1>=0,V>=0] * Chain [25]: 2*s(78)+2*s(80)+2*s(81)+2*s(82)+1*s(93)+1*s(95)+1*s(96)+1 Such that:s(90) =< V s(91) =< 2/3*V aux(21) =< V1 aux(22) =< 2/3*V1 s(82) =< aux(21) s(78) =< aux(21) s(78) =< aux(22) s(79) =< aux(21) s(80) =< aux(21)*s(79) s(81) =< s(78)*aux(21) s(93) =< s(90) s(93) =< s(91) s(94) =< s(90) s(95) =< s(90)*s(94) s(96) =< s(93)*s(90) with precondition: [Out=1,V1>=1,V>=0] #### Cost of chains of fun3(V1,Out): * Chain [29]: 0 with precondition: [Out=0,V1>=0] * Chain [28]: 0 with precondition: [Out=1,V1>=0] * Chain [27]: 1*s(101)+1*s(103)+1*s(104)+0 Such that:s(98) =< V1 s(99) =< 2/3*V1 s(101) =< s(98) s(101) =< s(99) s(102) =< s(98) s(103) =< s(98)*s(102) s(104) =< s(101)*s(98) with precondition: [V1>=1,Out>=1,V1+1>=Out] #### Cost of chains of fun4(V1,Out): * Chain [32]: 0 with precondition: [Out=0,V1>=0] * Chain [31]: 0 with precondition: [Out=1,V1>=0] * Chain [30]: 1*s(108)+1*s(110)+1*s(111)+0 Such that:s(105) =< V1 s(106) =< 2/3*V1 s(108) =< s(105) s(108) =< s(106) s(109) =< s(105) s(110) =< s(105)*s(109) s(111) =< s(108)*s(105) with precondition: [V1>=1,Out>=1,V1+1>=Out] #### Cost of chains of start(V1,V): * Chain [33]: 3*s(112)+3*s(113)+10*s(117)+10*s(119)+10*s(120)+5*s(130)+5*s(132)+5*s(133)+1 Such that:aux(23) =< V1 aux(24) =< 2/3*V1 aux(25) =< V aux(26) =< 2/3*V s(112) =< aux(23) s(113) =< aux(25) s(117) =< aux(23) s(117) =< aux(24) s(118) =< aux(23) s(119) =< aux(23)*s(118) s(120) =< s(117)*aux(23) s(130) =< aux(25) s(130) =< aux(26) s(131) =< aux(25) s(132) =< aux(25)*s(131) s(133) =< s(130)*aux(25) with precondition: [V1>=0] Closed-form bounds of start(V1,V): ------------------------------------- * Chain [33] with precondition: [V1>=0] - Upper bound: 13*V1+1+20*V1*V1+nat(V)*8+nat(V)*10*nat(V) - Complexity: n^2 ### Maximum cost of start(V1,V): 13*V1+1+20*V1*V1+nat(V)*8+nat(V)*10*nat(V) Asymptotic class: n^2 * Total analysis performed in 364 ms. ---------------------------------------- (14) BOUNDS(1, n^2) ---------------------------------------- (15) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (16) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X) u21(ackout(X), Y) -> u22(ackin(Y, X)) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(ackout(x_1)) -> ackout(encArg(x_1)) encArg(u22(x_1)) -> u22(encArg(x_1)) encArg(cons_ackin(x_1, x_2)) -> ackin(encArg(x_1), encArg(x_2)) encArg(cons_u21(x_1, x_2)) -> u21(encArg(x_1), encArg(x_2)) encode_ackin(x_1, x_2) -> ackin(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_u21(x_1, x_2) -> u21(encArg(x_1), encArg(x_2)) encode_ackout(x_1) -> ackout(encArg(x_1)) encode_u22(x_1) -> u22(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (17) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (18) Obligation: Innermost TRS: Rules: ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X) u21(ackout(X), Y) -> u22(ackin(Y, X)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(ackout(x_1)) -> ackout(encArg(x_1)) encArg(u22(x_1)) -> u22(encArg(x_1)) encArg(cons_ackin(x_1, x_2)) -> ackin(encArg(x_1), encArg(x_2)) encArg(cons_u21(x_1, x_2)) -> u21(encArg(x_1), encArg(x_2)) encode_ackin(x_1, x_2) -> ackin(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_u21(x_1, x_2) -> u21(encArg(x_1), encArg(x_2)) encode_ackout(x_1) -> ackout(encArg(x_1)) encode_u22(x_1) -> u22(encArg(x_1)) Types: ackin :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 s :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 u21 :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 ackout :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 u22 :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encArg :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 cons_ackin :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 cons_u21 :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encode_ackin :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encode_s :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encode_u21 :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encode_ackout :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encode_u22 :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 hole_s:ackout:u22:cons_ackin:cons_u211_0 :: s:ackout:u22:cons_ackin:cons_u21 gen_s:ackout:u22:cons_ackin:cons_u212_0 :: Nat -> s:ackout:u22:cons_ackin:cons_u21 ---------------------------------------- (19) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: ackin, u21, encArg They will be analysed ascendingly in the following order: ackin = u21 ackin < encArg u21 < encArg ---------------------------------------- (20) Obligation: Innermost TRS: Rules: ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X) u21(ackout(X), Y) -> u22(ackin(Y, X)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(ackout(x_1)) -> ackout(encArg(x_1)) encArg(u22(x_1)) -> u22(encArg(x_1)) encArg(cons_ackin(x_1, x_2)) -> ackin(encArg(x_1), encArg(x_2)) encArg(cons_u21(x_1, x_2)) -> u21(encArg(x_1), encArg(x_2)) encode_ackin(x_1, x_2) -> ackin(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_u21(x_1, x_2) -> u21(encArg(x_1), encArg(x_2)) encode_ackout(x_1) -> ackout(encArg(x_1)) encode_u22(x_1) -> u22(encArg(x_1)) Types: ackin :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 s :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 u21 :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 ackout :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 u22 :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encArg :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 cons_ackin :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 cons_u21 :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encode_ackin :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encode_s :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encode_u21 :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encode_ackout :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encode_u22 :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 hole_s:ackout:u22:cons_ackin:cons_u211_0 :: s:ackout:u22:cons_ackin:cons_u21 gen_s:ackout:u22:cons_ackin:cons_u212_0 :: Nat -> s:ackout:u22:cons_ackin:cons_u21 Generator Equations: gen_s:ackout:u22:cons_ackin:cons_u212_0(0) <=> hole_s:ackout:u22:cons_ackin:cons_u211_0 gen_s:ackout:u22:cons_ackin:cons_u212_0(+(x, 1)) <=> s(gen_s:ackout:u22:cons_ackin:cons_u212_0(x)) The following defined symbols remain to be analysed: u21, ackin, encArg They will be analysed ascendingly in the following order: ackin = u21 ackin < encArg u21 < encArg ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ackin(gen_s:ackout:u22:cons_ackin:cons_u212_0(1), gen_s:ackout:u22:cons_ackin:cons_u212_0(+(1, n9_0))) -> *3_0, rt in Omega(n9_0) Induction Base: ackin(gen_s:ackout:u22:cons_ackin:cons_u212_0(1), gen_s:ackout:u22:cons_ackin:cons_u212_0(+(1, 0))) Induction Step: ackin(gen_s:ackout:u22:cons_ackin:cons_u212_0(1), gen_s:ackout:u22:cons_ackin:cons_u212_0(+(1, +(n9_0, 1)))) ->_R^Omega(1) u21(ackin(s(gen_s:ackout:u22:cons_ackin:cons_u212_0(0)), gen_s:ackout:u22:cons_ackin:cons_u212_0(+(1, n9_0))), gen_s:ackout:u22:cons_ackin:cons_u212_0(0)) ->_IH u21(*3_0, gen_s:ackout:u22:cons_ackin:cons_u212_0(0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Complex Obligation (BEST) ---------------------------------------- (23) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X) u21(ackout(X), Y) -> u22(ackin(Y, X)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(ackout(x_1)) -> ackout(encArg(x_1)) encArg(u22(x_1)) -> u22(encArg(x_1)) encArg(cons_ackin(x_1, x_2)) -> ackin(encArg(x_1), encArg(x_2)) encArg(cons_u21(x_1, x_2)) -> u21(encArg(x_1), encArg(x_2)) encode_ackin(x_1, x_2) -> ackin(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_u21(x_1, x_2) -> u21(encArg(x_1), encArg(x_2)) encode_ackout(x_1) -> ackout(encArg(x_1)) encode_u22(x_1) -> u22(encArg(x_1)) Types: ackin :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 s :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 u21 :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 ackout :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 u22 :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encArg :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 cons_ackin :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 cons_u21 :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encode_ackin :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encode_s :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encode_u21 :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encode_ackout :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encode_u22 :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 hole_s:ackout:u22:cons_ackin:cons_u211_0 :: s:ackout:u22:cons_ackin:cons_u21 gen_s:ackout:u22:cons_ackin:cons_u212_0 :: Nat -> s:ackout:u22:cons_ackin:cons_u21 Generator Equations: gen_s:ackout:u22:cons_ackin:cons_u212_0(0) <=> hole_s:ackout:u22:cons_ackin:cons_u211_0 gen_s:ackout:u22:cons_ackin:cons_u212_0(+(x, 1)) <=> s(gen_s:ackout:u22:cons_ackin:cons_u212_0(x)) The following defined symbols remain to be analysed: ackin, encArg They will be analysed ascendingly in the following order: ackin = u21 ackin < encArg u21 < encArg ---------------------------------------- (24) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (25) BOUNDS(n^1, INF) ---------------------------------------- (26) Obligation: Innermost TRS: Rules: ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X) u21(ackout(X), Y) -> u22(ackin(Y, X)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(ackout(x_1)) -> ackout(encArg(x_1)) encArg(u22(x_1)) -> u22(encArg(x_1)) encArg(cons_ackin(x_1, x_2)) -> ackin(encArg(x_1), encArg(x_2)) encArg(cons_u21(x_1, x_2)) -> u21(encArg(x_1), encArg(x_2)) encode_ackin(x_1, x_2) -> ackin(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_u21(x_1, x_2) -> u21(encArg(x_1), encArg(x_2)) encode_ackout(x_1) -> ackout(encArg(x_1)) encode_u22(x_1) -> u22(encArg(x_1)) Types: ackin :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 s :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 u21 :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 ackout :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 u22 :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encArg :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 cons_ackin :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 cons_u21 :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encode_ackin :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encode_s :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encode_u21 :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encode_ackout :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 encode_u22 :: s:ackout:u22:cons_ackin:cons_u21 -> s:ackout:u22:cons_ackin:cons_u21 hole_s:ackout:u22:cons_ackin:cons_u211_0 :: s:ackout:u22:cons_ackin:cons_u21 gen_s:ackout:u22:cons_ackin:cons_u212_0 :: Nat -> s:ackout:u22:cons_ackin:cons_u21 Lemmas: ackin(gen_s:ackout:u22:cons_ackin:cons_u212_0(1), gen_s:ackout:u22:cons_ackin:cons_u212_0(+(1, n9_0))) -> *3_0, rt in Omega(n9_0) Generator Equations: gen_s:ackout:u22:cons_ackin:cons_u212_0(0) <=> hole_s:ackout:u22:cons_ackin:cons_u211_0 gen_s:ackout:u22:cons_ackin:cons_u212_0(+(x, 1)) <=> s(gen_s:ackout:u22:cons_ackin:cons_u212_0(x)) The following defined symbols remain to be analysed: u21, encArg They will be analysed ascendingly in the following order: ackin = u21 ackin < encArg u21 < encArg ---------------------------------------- (27) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_s:ackout:u22:cons_ackin:cons_u212_0(+(1, n451_0))) -> *3_0, rt in Omega(0) Induction Base: encArg(gen_s:ackout:u22:cons_ackin:cons_u212_0(+(1, 0))) Induction Step: encArg(gen_s:ackout:u22:cons_ackin:cons_u212_0(+(1, +(n451_0, 1)))) ->_R^Omega(0) s(encArg(gen_s:ackout:u22:cons_ackin:cons_u212_0(+(1, n451_0)))) ->_IH s(*3_0) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (28) BOUNDS(1, INF)