/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 170 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (14) CdtProblem (15) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 5 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 59 ms] (18) CdtProblem (19) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 56 ms] (20) CdtProblem (21) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (22) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(s(X), X) -> f(X, a(X)) f(X, c(X)) -> f(s(X), X) f(X, X) -> c(X) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(s(x_1)) -> s(encArg(x_1)) encArg(a(x_1)) -> a(encArg(x_1)) encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(s(X), X) -> f(X, a(X)) f(X, c(X)) -> f(s(X), X) f(X, X) -> c(X) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(a(x_1)) -> a(encArg(x_1)) encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(s(X), X) -> f(X, a(X)) f(X, c(X)) -> f(s(X), X) f(X, X) -> c(X) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(a(x_1)) -> a(encArg(x_1)) encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(a(z0)) -> a(encArg(z0)) encArg(c(z0)) -> c(encArg(z0)) encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_s(z0) -> s(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_c(z0) -> c(encArg(z0)) f(s(z0), z0) -> f(z0, a(z0)) f(z0, c(z0)) -> f(s(z0), z0) f(z0, z0) -> c(z0) Tuples: ENCARG(s(z0)) -> c1(ENCARG(z0)) ENCARG(a(z0)) -> c2(ENCARG(z0)) ENCARG(c(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c4(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_F(z0, z1) -> c5(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_S(z0) -> c6(ENCARG(z0)) ENCODE_A(z0) -> c7(ENCARG(z0)) ENCODE_C(z0) -> c8(ENCARG(z0)) F(s(z0), z0) -> c9(F(z0, a(z0))) F(z0, c(z0)) -> c10(F(s(z0), z0)) F(z0, z0) -> c11 S tuples: F(s(z0), z0) -> c9(F(z0, a(z0))) F(z0, c(z0)) -> c10(F(s(z0), z0)) F(z0, z0) -> c11 K tuples:none Defined Rule Symbols: f_2, encArg_1, encode_f_2, encode_s_1, encode_a_1, encode_c_1 Defined Pair Symbols: ENCARG_1, ENCODE_F_2, ENCODE_S_1, ENCODE_A_1, ENCODE_C_1, F_2 Compound Symbols: c1_1, c2_1, c3_1, c4_3, c5_3, c6_1, c7_1, c8_1, c9_1, c10_1, c11 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 3 leading nodes: ENCODE_S(z0) -> c6(ENCARG(z0)) ENCODE_A(z0) -> c7(ENCARG(z0)) ENCODE_C(z0) -> c8(ENCARG(z0)) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(a(z0)) -> a(encArg(z0)) encArg(c(z0)) -> c(encArg(z0)) encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_s(z0) -> s(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_c(z0) -> c(encArg(z0)) f(s(z0), z0) -> f(z0, a(z0)) f(z0, c(z0)) -> f(s(z0), z0) f(z0, z0) -> c(z0) Tuples: ENCARG(s(z0)) -> c1(ENCARG(z0)) ENCARG(a(z0)) -> c2(ENCARG(z0)) ENCARG(c(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c4(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_F(z0, z1) -> c5(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(s(z0), z0) -> c9(F(z0, a(z0))) F(z0, c(z0)) -> c10(F(s(z0), z0)) F(z0, z0) -> c11 S tuples: F(s(z0), z0) -> c9(F(z0, a(z0))) F(z0, c(z0)) -> c10(F(s(z0), z0)) F(z0, z0) -> c11 K tuples:none Defined Rule Symbols: f_2, encArg_1, encode_f_2, encode_s_1, encode_a_1, encode_c_1 Defined Pair Symbols: ENCARG_1, ENCODE_F_2, F_2 Compound Symbols: c1_1, c2_1, c3_1, c4_3, c5_3, c9_1, c10_1, c11 ---------------------------------------- (9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(a(z0)) -> a(encArg(z0)) encArg(c(z0)) -> c(encArg(z0)) encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_s(z0) -> s(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_c(z0) -> c(encArg(z0)) f(s(z0), z0) -> f(z0, a(z0)) f(z0, c(z0)) -> f(s(z0), z0) f(z0, z0) -> c(z0) Tuples: ENCARG(s(z0)) -> c1(ENCARG(z0)) ENCARG(a(z0)) -> c2(ENCARG(z0)) ENCARG(c(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c4(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_F(z0, z1) -> c5(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(z0, c(z0)) -> c10(F(s(z0), z0)) F(z0, z0) -> c11 F(s(z0), z0) -> c9 S tuples: F(z0, c(z0)) -> c10(F(s(z0), z0)) F(z0, z0) -> c11 F(s(z0), z0) -> c9 K tuples:none Defined Rule Symbols: f_2, encArg_1, encode_f_2, encode_s_1, encode_a_1, encode_c_1 Defined Pair Symbols: ENCARG_1, ENCODE_F_2, F_2 Compound Symbols: c1_1, c2_1, c3_1, c4_3, c5_3, c10_1, c11, c9 ---------------------------------------- (11) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(a(z0)) -> a(encArg(z0)) encArg(c(z0)) -> c(encArg(z0)) encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_s(z0) -> s(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_c(z0) -> c(encArg(z0)) f(s(z0), z0) -> f(z0, a(z0)) f(z0, c(z0)) -> f(s(z0), z0) f(z0, z0) -> c(z0) Tuples: ENCARG(s(z0)) -> c1(ENCARG(z0)) ENCARG(a(z0)) -> c2(ENCARG(z0)) ENCARG(c(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c4(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(z0, c(z0)) -> c10(F(s(z0), z0)) F(z0, z0) -> c11 F(s(z0), z0) -> c9 ENCODE_F(z0, z1) -> c6(F(encArg(z0), encArg(z1))) ENCODE_F(z0, z1) -> c6(ENCARG(z0)) ENCODE_F(z0, z1) -> c6(ENCARG(z1)) S tuples: F(z0, c(z0)) -> c10(F(s(z0), z0)) F(z0, z0) -> c11 F(s(z0), z0) -> c9 K tuples:none Defined Rule Symbols: f_2, encArg_1, encode_f_2, encode_s_1, encode_a_1, encode_c_1 Defined Pair Symbols: ENCARG_1, F_2, ENCODE_F_2 Compound Symbols: c1_1, c2_1, c3_1, c4_3, c10_1, c11, c9, c6_1 ---------------------------------------- (13) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_F(z0, z1) -> c6(ENCARG(z0)) ENCODE_F(z0, z1) -> c6(ENCARG(z1)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(a(z0)) -> a(encArg(z0)) encArg(c(z0)) -> c(encArg(z0)) encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_s(z0) -> s(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_c(z0) -> c(encArg(z0)) f(s(z0), z0) -> f(z0, a(z0)) f(z0, c(z0)) -> f(s(z0), z0) f(z0, z0) -> c(z0) Tuples: ENCARG(s(z0)) -> c1(ENCARG(z0)) ENCARG(a(z0)) -> c2(ENCARG(z0)) ENCARG(c(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c4(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(z0, c(z0)) -> c10(F(s(z0), z0)) F(z0, z0) -> c11 F(s(z0), z0) -> c9 ENCODE_F(z0, z1) -> c6(F(encArg(z0), encArg(z1))) S tuples: F(z0, c(z0)) -> c10(F(s(z0), z0)) F(z0, z0) -> c11 F(s(z0), z0) -> c9 K tuples:none Defined Rule Symbols: f_2, encArg_1, encode_f_2, encode_s_1, encode_a_1, encode_c_1 Defined Pair Symbols: ENCARG_1, F_2, ENCODE_F_2 Compound Symbols: c1_1, c2_1, c3_1, c4_3, c10_1, c11, c9, c6_1 ---------------------------------------- (15) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_s(z0) -> s(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_c(z0) -> c(encArg(z0)) ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(a(z0)) -> a(encArg(z0)) encArg(c(z0)) -> c(encArg(z0)) encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) f(s(z0), z0) -> f(z0, a(z0)) f(z0, c(z0)) -> f(s(z0), z0) f(z0, z0) -> c(z0) Tuples: ENCARG(s(z0)) -> c1(ENCARG(z0)) ENCARG(a(z0)) -> c2(ENCARG(z0)) ENCARG(c(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c4(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(z0, c(z0)) -> c10(F(s(z0), z0)) F(z0, z0) -> c11 F(s(z0), z0) -> c9 ENCODE_F(z0, z1) -> c6(F(encArg(z0), encArg(z1))) S tuples: F(z0, c(z0)) -> c10(F(s(z0), z0)) F(z0, z0) -> c11 F(s(z0), z0) -> c9 K tuples:none Defined Rule Symbols: encArg_1, f_2 Defined Pair Symbols: ENCARG_1, F_2, ENCODE_F_2 Compound Symbols: c1_1, c2_1, c3_1, c4_3, c10_1, c11, c9, c6_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(z0, z0) -> c11 F(s(z0), z0) -> c9 We considered the (Usable) Rules:none And the Tuples: ENCARG(s(z0)) -> c1(ENCARG(z0)) ENCARG(a(z0)) -> c2(ENCARG(z0)) ENCARG(c(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c4(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(z0, c(z0)) -> c10(F(s(z0), z0)) F(z0, z0) -> c11 F(s(z0), z0) -> c9 ENCODE_F(z0, z1) -> c6(F(encArg(z0), encArg(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(ENCARG(x_1)) = [2]x_1 POL(ENCODE_F(x_1, x_2)) = [1] + x_2 POL(F(x_1, x_2)) = [1] POL(a(x_1)) = [3] + x_1 POL(c(x_1)) = [3] + x_1 POL(c1(x_1)) = x_1 POL(c10(x_1)) = x_1 POL(c11) = 0 POL(c2(x_1)) = x_1 POL(c3(x_1)) = x_1 POL(c4(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c6(x_1)) = x_1 POL(c9) = 0 POL(cons_f(x_1, x_2)) = [1] + x_1 + x_2 POL(encArg(x_1)) = 0 POL(f(x_1, x_2)) = [3] POL(s(x_1)) = [3] + x_1 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(a(z0)) -> a(encArg(z0)) encArg(c(z0)) -> c(encArg(z0)) encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) f(s(z0), z0) -> f(z0, a(z0)) f(z0, c(z0)) -> f(s(z0), z0) f(z0, z0) -> c(z0) Tuples: ENCARG(s(z0)) -> c1(ENCARG(z0)) ENCARG(a(z0)) -> c2(ENCARG(z0)) ENCARG(c(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c4(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(z0, c(z0)) -> c10(F(s(z0), z0)) F(z0, z0) -> c11 F(s(z0), z0) -> c9 ENCODE_F(z0, z1) -> c6(F(encArg(z0), encArg(z1))) S tuples: F(z0, c(z0)) -> c10(F(s(z0), z0)) K tuples: F(z0, z0) -> c11 F(s(z0), z0) -> c9 Defined Rule Symbols: encArg_1, f_2 Defined Pair Symbols: ENCARG_1, F_2, ENCODE_F_2 Compound Symbols: c1_1, c2_1, c3_1, c4_3, c10_1, c11, c9, c6_1 ---------------------------------------- (19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(z0, c(z0)) -> c10(F(s(z0), z0)) We considered the (Usable) Rules: encArg(s(z0)) -> s(encArg(z0)) f(s(z0), z0) -> f(z0, a(z0)) encArg(c(z0)) -> c(encArg(z0)) encArg(a(z0)) -> a(encArg(z0)) f(z0, c(z0)) -> f(s(z0), z0) encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) f(z0, z0) -> c(z0) And the Tuples: ENCARG(s(z0)) -> c1(ENCARG(z0)) ENCARG(a(z0)) -> c2(ENCARG(z0)) ENCARG(c(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c4(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(z0, c(z0)) -> c10(F(s(z0), z0)) F(z0, z0) -> c11 F(s(z0), z0) -> c9 ENCODE_F(z0, z1) -> c6(F(encArg(z0), encArg(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(ENCARG(x_1)) = x_1^2 POL(ENCODE_F(x_1, x_2)) = [2] + [2]x_1 + [2]x_2 + [2]x_2^2 + x_1*x_2 + x_1^2 POL(F(x_1, x_2)) = x_2 POL(a(x_1)) = x_1 POL(c(x_1)) = [1] + x_1 POL(c1(x_1)) = x_1 POL(c10(x_1)) = x_1 POL(c11) = 0 POL(c2(x_1)) = x_1 POL(c3(x_1)) = x_1 POL(c4(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c6(x_1)) = x_1 POL(c9) = 0 POL(cons_f(x_1, x_2)) = [1] + x_1 + x_2 POL(encArg(x_1)) = x_1 POL(f(x_1, x_2)) = [1] + x_1 + x_2 POL(s(x_1)) = x_1 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(s(z0)) -> s(encArg(z0)) encArg(a(z0)) -> a(encArg(z0)) encArg(c(z0)) -> c(encArg(z0)) encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) f(s(z0), z0) -> f(z0, a(z0)) f(z0, c(z0)) -> f(s(z0), z0) f(z0, z0) -> c(z0) Tuples: ENCARG(s(z0)) -> c1(ENCARG(z0)) ENCARG(a(z0)) -> c2(ENCARG(z0)) ENCARG(c(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c4(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(z0, c(z0)) -> c10(F(s(z0), z0)) F(z0, z0) -> c11 F(s(z0), z0) -> c9 ENCODE_F(z0, z1) -> c6(F(encArg(z0), encArg(z1))) S tuples:none K tuples: F(z0, z0) -> c11 F(s(z0), z0) -> c9 F(z0, c(z0)) -> c10(F(s(z0), z0)) Defined Rule Symbols: encArg_1, f_2 Defined Pair Symbols: ENCARG_1, F_2, ENCODE_F_2 Compound Symbols: c1_1, c2_1, c3_1, c4_3, c10_1, c11, c9, c6_1 ---------------------------------------- (21) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (22) BOUNDS(1, 1)