/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 164 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (14) CdtProblem (15) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 25 ms] (18) CdtProblem (19) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (20) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: ap(ap(ff, x), x) -> ap(ap(x, ap(ff, x)), ap(ap(cons, x), nil)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(ff) -> ff encArg(cons) -> cons encArg(nil) -> nil encArg(cons_ap(x_1, x_2)) -> ap(encArg(x_1), encArg(x_2)) encode_ap(x_1, x_2) -> ap(encArg(x_1), encArg(x_2)) encode_ff -> ff encode_cons -> cons encode_nil -> nil ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: ap(ap(ff, x), x) -> ap(ap(x, ap(ff, x)), ap(ap(cons, x), nil)) The (relative) TRS S consists of the following rules: encArg(ff) -> ff encArg(cons) -> cons encArg(nil) -> nil encArg(cons_ap(x_1, x_2)) -> ap(encArg(x_1), encArg(x_2)) encode_ap(x_1, x_2) -> ap(encArg(x_1), encArg(x_2)) encode_ff -> ff encode_cons -> cons encode_nil -> nil Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: ap(ap(ff, x), x) -> ap(ap(x, ap(ff, x)), ap(ap(cons, x), nil)) The (relative) TRS S consists of the following rules: encArg(ff) -> ff encArg(cons) -> cons encArg(nil) -> nil encArg(cons_ap(x_1, x_2)) -> ap(encArg(x_1), encArg(x_2)) encode_ap(x_1, x_2) -> ap(encArg(x_1), encArg(x_2)) encode_ff -> ff encode_cons -> cons encode_nil -> nil Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(ff) -> ff encArg(cons) -> cons encArg(nil) -> nil encArg(cons_ap(z0, z1)) -> ap(encArg(z0), encArg(z1)) encode_ap(z0, z1) -> ap(encArg(z0), encArg(z1)) encode_ff -> ff encode_cons -> cons encode_nil -> nil ap(ap(ff, z0), z0) -> ap(ap(z0, ap(ff, z0)), ap(ap(cons, z0), nil)) Tuples: ENCARG(ff) -> c ENCARG(cons) -> c1 ENCARG(nil) -> c2 ENCARG(cons_ap(z0, z1)) -> c3(AP(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_AP(z0, z1) -> c4(AP(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_FF -> c5 ENCODE_CONS -> c6 ENCODE_NIL -> c7 AP(ap(ff, z0), z0) -> c8(AP(ap(z0, ap(ff, z0)), ap(ap(cons, z0), nil)), AP(z0, ap(ff, z0)), AP(ff, z0), AP(ap(cons, z0), nil), AP(cons, z0)) S tuples: AP(ap(ff, z0), z0) -> c8(AP(ap(z0, ap(ff, z0)), ap(ap(cons, z0), nil)), AP(z0, ap(ff, z0)), AP(ff, z0), AP(ap(cons, z0), nil), AP(cons, z0)) K tuples:none Defined Rule Symbols: ap_2, encArg_1, encode_ap_2, encode_ff, encode_cons, encode_nil Defined Pair Symbols: ENCARG_1, ENCODE_AP_2, ENCODE_FF, ENCODE_CONS, ENCODE_NIL, AP_2 Compound Symbols: c, c1, c2, c3_3, c4_3, c5, c6, c7, c8_5 ---------------------------------------- (7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 6 trailing nodes: ENCARG(ff) -> c ENCODE_CONS -> c6 ENCARG(nil) -> c2 ENCODE_NIL -> c7 ENCODE_FF -> c5 ENCARG(cons) -> c1 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(ff) -> ff encArg(cons) -> cons encArg(nil) -> nil encArg(cons_ap(z0, z1)) -> ap(encArg(z0), encArg(z1)) encode_ap(z0, z1) -> ap(encArg(z0), encArg(z1)) encode_ff -> ff encode_cons -> cons encode_nil -> nil ap(ap(ff, z0), z0) -> ap(ap(z0, ap(ff, z0)), ap(ap(cons, z0), nil)) Tuples: ENCARG(cons_ap(z0, z1)) -> c3(AP(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_AP(z0, z1) -> c4(AP(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) AP(ap(ff, z0), z0) -> c8(AP(ap(z0, ap(ff, z0)), ap(ap(cons, z0), nil)), AP(z0, ap(ff, z0)), AP(ff, z0), AP(ap(cons, z0), nil), AP(cons, z0)) S tuples: AP(ap(ff, z0), z0) -> c8(AP(ap(z0, ap(ff, z0)), ap(ap(cons, z0), nil)), AP(z0, ap(ff, z0)), AP(ff, z0), AP(ap(cons, z0), nil), AP(cons, z0)) K tuples:none Defined Rule Symbols: ap_2, encArg_1, encode_ap_2, encode_ff, encode_cons, encode_nil Defined Pair Symbols: ENCARG_1, ENCODE_AP_2, AP_2 Compound Symbols: c3_3, c4_3, c8_5 ---------------------------------------- (9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 5 trailing tuple parts ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(ff) -> ff encArg(cons) -> cons encArg(nil) -> nil encArg(cons_ap(z0, z1)) -> ap(encArg(z0), encArg(z1)) encode_ap(z0, z1) -> ap(encArg(z0), encArg(z1)) encode_ff -> ff encode_cons -> cons encode_nil -> nil ap(ap(ff, z0), z0) -> ap(ap(z0, ap(ff, z0)), ap(ap(cons, z0), nil)) Tuples: ENCARG(cons_ap(z0, z1)) -> c3(AP(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_AP(z0, z1) -> c4(AP(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) AP(ap(ff, z0), z0) -> c8 S tuples: AP(ap(ff, z0), z0) -> c8 K tuples:none Defined Rule Symbols: ap_2, encArg_1, encode_ap_2, encode_ff, encode_cons, encode_nil Defined Pair Symbols: ENCARG_1, ENCODE_AP_2, AP_2 Compound Symbols: c3_3, c4_3, c8 ---------------------------------------- (11) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(ff) -> ff encArg(cons) -> cons encArg(nil) -> nil encArg(cons_ap(z0, z1)) -> ap(encArg(z0), encArg(z1)) encode_ap(z0, z1) -> ap(encArg(z0), encArg(z1)) encode_ff -> ff encode_cons -> cons encode_nil -> nil ap(ap(ff, z0), z0) -> ap(ap(z0, ap(ff, z0)), ap(ap(cons, z0), nil)) Tuples: ENCARG(cons_ap(z0, z1)) -> c3(AP(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) AP(ap(ff, z0), z0) -> c8 ENCODE_AP(z0, z1) -> c(AP(encArg(z0), encArg(z1))) ENCODE_AP(z0, z1) -> c(ENCARG(z0)) ENCODE_AP(z0, z1) -> c(ENCARG(z1)) S tuples: AP(ap(ff, z0), z0) -> c8 K tuples:none Defined Rule Symbols: ap_2, encArg_1, encode_ap_2, encode_ff, encode_cons, encode_nil Defined Pair Symbols: ENCARG_1, AP_2, ENCODE_AP_2 Compound Symbols: c3_3, c8, c_1 ---------------------------------------- (13) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_AP(z0, z1) -> c(ENCARG(z0)) ENCODE_AP(z0, z1) -> c(ENCARG(z1)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(ff) -> ff encArg(cons) -> cons encArg(nil) -> nil encArg(cons_ap(z0, z1)) -> ap(encArg(z0), encArg(z1)) encode_ap(z0, z1) -> ap(encArg(z0), encArg(z1)) encode_ff -> ff encode_cons -> cons encode_nil -> nil ap(ap(ff, z0), z0) -> ap(ap(z0, ap(ff, z0)), ap(ap(cons, z0), nil)) Tuples: ENCARG(cons_ap(z0, z1)) -> c3(AP(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) AP(ap(ff, z0), z0) -> c8 ENCODE_AP(z0, z1) -> c(AP(encArg(z0), encArg(z1))) S tuples: AP(ap(ff, z0), z0) -> c8 K tuples:none Defined Rule Symbols: ap_2, encArg_1, encode_ap_2, encode_ff, encode_cons, encode_nil Defined Pair Symbols: ENCARG_1, AP_2, ENCODE_AP_2 Compound Symbols: c3_3, c8, c_1 ---------------------------------------- (15) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_ap(z0, z1) -> ap(encArg(z0), encArg(z1)) encode_ff -> ff encode_cons -> cons encode_nil -> nil ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(ff) -> ff encArg(cons) -> cons encArg(nil) -> nil encArg(cons_ap(z0, z1)) -> ap(encArg(z0), encArg(z1)) ap(ap(ff, z0), z0) -> ap(ap(z0, ap(ff, z0)), ap(ap(cons, z0), nil)) Tuples: ENCARG(cons_ap(z0, z1)) -> c3(AP(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) AP(ap(ff, z0), z0) -> c8 ENCODE_AP(z0, z1) -> c(AP(encArg(z0), encArg(z1))) S tuples: AP(ap(ff, z0), z0) -> c8 K tuples:none Defined Rule Symbols: encArg_1, ap_2 Defined Pair Symbols: ENCARG_1, AP_2, ENCODE_AP_2 Compound Symbols: c3_3, c8, c_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. AP(ap(ff, z0), z0) -> c8 We considered the (Usable) Rules:none And the Tuples: ENCARG(cons_ap(z0, z1)) -> c3(AP(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) AP(ap(ff, z0), z0) -> c8 ENCODE_AP(z0, z1) -> c(AP(encArg(z0), encArg(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(AP(x_1, x_2)) = [1] POL(ENCARG(x_1)) = x_1 POL(ENCODE_AP(x_1, x_2)) = [1] POL(ap(x_1, x_2)) = x_2 POL(c(x_1)) = x_1 POL(c3(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c8) = 0 POL(cons) = [1] POL(cons_ap(x_1, x_2)) = [1] + x_1 + x_2 POL(encArg(x_1)) = [1] + x_1 POL(ff) = [1] POL(nil) = 0 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(ff) -> ff encArg(cons) -> cons encArg(nil) -> nil encArg(cons_ap(z0, z1)) -> ap(encArg(z0), encArg(z1)) ap(ap(ff, z0), z0) -> ap(ap(z0, ap(ff, z0)), ap(ap(cons, z0), nil)) Tuples: ENCARG(cons_ap(z0, z1)) -> c3(AP(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) AP(ap(ff, z0), z0) -> c8 ENCODE_AP(z0, z1) -> c(AP(encArg(z0), encArg(z1))) S tuples:none K tuples: AP(ap(ff, z0), z0) -> c8 Defined Rule Symbols: encArg_1, ap_2 Defined Pair Symbols: ENCARG_1, AP_2, ENCODE_AP_2 Compound Symbols: c3_3, c8, c_1 ---------------------------------------- (19) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (20) BOUNDS(1, 1)