/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(INF, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 492 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) InfiniteLowerBoundProof [FINISHED, 5 ms] (8) BOUNDS(INF, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(rnil) -> rnil encArg(rcons(x_1, x_2)) -> rcons(encArg(x_1), encArg(x_2)) encArg(posrecip(x_1)) -> posrecip(encArg(x_1)) encArg(negrecip(x_1)) -> negrecip(encArg(x_1)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_2ndspos(x_1, x_2)) -> 2ndspos(encArg(x_1), encArg(x_2)) encArg(cons_2ndsneg(x_1, x_2)) -> 2ndsneg(encArg(x_1), encArg(x_2)) encArg(cons_pi(x_1)) -> pi(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_square(x_1)) -> square(encArg(x_1)) encode_from(x_1) -> from(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_2ndspos(x_1, x_2) -> 2ndspos(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_rnil -> rnil encode_rcons(x_1, x_2) -> rcons(encArg(x_1), encArg(x_2)) encode_posrecip(x_1) -> posrecip(encArg(x_1)) encode_2ndsneg(x_1, x_2) -> 2ndsneg(encArg(x_1), encArg(x_2)) encode_negrecip(x_1) -> negrecip(encArg(x_1)) encode_pi(x_1) -> pi(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_square(x_1) -> square(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) The (relative) TRS S consists of the following rules: encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(rnil) -> rnil encArg(rcons(x_1, x_2)) -> rcons(encArg(x_1), encArg(x_2)) encArg(posrecip(x_1)) -> posrecip(encArg(x_1)) encArg(negrecip(x_1)) -> negrecip(encArg(x_1)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_2ndspos(x_1, x_2)) -> 2ndspos(encArg(x_1), encArg(x_2)) encArg(cons_2ndsneg(x_1, x_2)) -> 2ndsneg(encArg(x_1), encArg(x_2)) encArg(cons_pi(x_1)) -> pi(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_square(x_1)) -> square(encArg(x_1)) encode_from(x_1) -> from(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_2ndspos(x_1, x_2) -> 2ndspos(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_rnil -> rnil encode_rcons(x_1, x_2) -> rcons(encArg(x_1), encArg(x_2)) encode_posrecip(x_1) -> posrecip(encArg(x_1)) encode_2ndsneg(x_1, x_2) -> 2ndsneg(encArg(x_1), encArg(x_2)) encode_negrecip(x_1) -> negrecip(encArg(x_1)) encode_pi(x_1) -> pi(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_square(x_1) -> square(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) The (relative) TRS S consists of the following rules: encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(rnil) -> rnil encArg(rcons(x_1, x_2)) -> rcons(encArg(x_1), encArg(x_2)) encArg(posrecip(x_1)) -> posrecip(encArg(x_1)) encArg(negrecip(x_1)) -> negrecip(encArg(x_1)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_2ndspos(x_1, x_2)) -> 2ndspos(encArg(x_1), encArg(x_2)) encArg(cons_2ndsneg(x_1, x_2)) -> 2ndsneg(encArg(x_1), encArg(x_2)) encArg(cons_pi(x_1)) -> pi(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_square(x_1)) -> square(encArg(x_1)) encode_from(x_1) -> from(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_2ndspos(x_1, x_2) -> 2ndspos(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_rnil -> rnil encode_rcons(x_1, x_2) -> rcons(encArg(x_1), encArg(x_2)) encode_posrecip(x_1) -> posrecip(encArg(x_1)) encode_2ndsneg(x_1, x_2) -> 2ndsneg(encArg(x_1), encArg(x_2)) encode_negrecip(x_1) -> negrecip(encArg(x_1)) encode_pi(x_1) -> pi(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_square(x_1) -> square(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) The (relative) TRS S consists of the following rules: encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(rnil) -> rnil encArg(rcons(x_1, x_2)) -> rcons(encArg(x_1), encArg(x_2)) encArg(posrecip(x_1)) -> posrecip(encArg(x_1)) encArg(negrecip(x_1)) -> negrecip(encArg(x_1)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_2ndspos(x_1, x_2)) -> 2ndspos(encArg(x_1), encArg(x_2)) encArg(cons_2ndsneg(x_1, x_2)) -> 2ndsneg(encArg(x_1), encArg(x_2)) encArg(cons_pi(x_1)) -> pi(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_square(x_1)) -> square(encArg(x_1)) encode_from(x_1) -> from(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_2ndspos(x_1, x_2) -> 2ndspos(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_rnil -> rnil encode_rcons(x_1, x_2) -> rcons(encArg(x_1), encArg(x_2)) encode_posrecip(x_1) -> posrecip(encArg(x_1)) encode_2ndsneg(x_1, x_2) -> 2ndsneg(encArg(x_1), encArg(x_2)) encode_negrecip(x_1) -> negrecip(encArg(x_1)) encode_pi(x_1) -> pi(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_square(x_1) -> square(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) InfiniteLowerBoundProof (FINISHED) The following loop proves infinite runtime complexity: The rewrite sequence from(X) ->^+ cons(X, from(s(X))) gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. The pumping substitution is [ ]. The result substitution is [X / s(X)]. ---------------------------------------- (8) BOUNDS(INF, INF)