/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 167 ms] (4) CpxRelTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 17 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) InliningProof [UPPER BOUND(ID), 104 ms] (16) CpxRNTS (17) SimplificationProof [BOTH BOUNDS(ID, ID), 1 ms] (18) CpxRNTS (19) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 29 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 2 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 108 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 1 ms] (32) CpxRNTS (33) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 212 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 74 ms] (38) CpxRNTS (39) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 64 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 12 ms] (44) CpxRNTS (45) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 97 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 32 ms] (50) CpxRNTS (51) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (52) CpxRNTS (53) IntTrsBoundProof [UPPER BOUND(ID), 169 ms] (54) CpxRNTS (55) IntTrsBoundProof [UPPER BOUND(ID), 155 ms] (56) CpxRNTS (57) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (58) CpxRNTS (59) IntTrsBoundProof [UPPER BOUND(ID), 149 ms] (60) CpxRNTS (61) IntTrsBoundProof [UPPER BOUND(ID), 73 ms] (62) CpxRNTS (63) FinalProof [FINISHED, 0 ms] (64) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a, b, X) -> f(X, X, X) c -> a c -> b S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_c) -> c encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_a -> a encode_b -> b encode_c -> c ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a, b, X) -> f(X, X, X) c -> a c -> b The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_c) -> c encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_a -> a encode_b -> b encode_c -> c Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a, b, X) -> f(X, X, X) c -> a c -> b The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_c) -> c encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_a -> a encode_b -> b encode_c -> c Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a, b, X) -> f(X, X, X) [1] c -> a [1] c -> b [1] encArg(a) -> a [0] encArg(b) -> b [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_c) -> c [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_a -> a [0] encode_b -> b [0] encode_c -> c [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(a, b, X) -> f(X, X, X) [1] c -> a [1] c -> b [1] encArg(a) -> a [0] encArg(b) -> b [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_c) -> c [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_a -> a [0] encode_b -> b [0] encode_c -> c [0] The TRS has the following type information: f :: a:b:cons_f:cons_c -> a:b:cons_f:cons_c -> a:b:cons_f:cons_c -> a:b:cons_f:cons_c a :: a:b:cons_f:cons_c b :: a:b:cons_f:cons_c c :: a:b:cons_f:cons_c encArg :: a:b:cons_f:cons_c -> a:b:cons_f:cons_c cons_f :: a:b:cons_f:cons_c -> a:b:cons_f:cons_c -> a:b:cons_f:cons_c -> a:b:cons_f:cons_c cons_c :: a:b:cons_f:cons_c encode_f :: a:b:cons_f:cons_c -> a:b:cons_f:cons_c -> a:b:cons_f:cons_c -> a:b:cons_f:cons_c encode_a :: a:b:cons_f:cons_c encode_b :: a:b:cons_f:cons_c encode_c :: a:b:cons_f:cons_c Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: c f_3 encArg_1 encode_f_3 encode_a encode_b encode_c Due to the following rules being added: encArg(v0) -> null_encArg [0] encode_f(v0, v1, v2) -> null_encode_f [0] encode_a -> null_encode_a [0] encode_b -> null_encode_b [0] encode_c -> null_encode_c [0] f(v0, v1, v2) -> null_f [0] And the following fresh constants: null_encArg, null_encode_f, null_encode_a, null_encode_b, null_encode_c, null_f ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(a, b, X) -> f(X, X, X) [1] c -> a [1] c -> b [1] encArg(a) -> a [0] encArg(b) -> b [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_c) -> c [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_a -> a [0] encode_b -> b [0] encode_c -> c [0] encArg(v0) -> null_encArg [0] encode_f(v0, v1, v2) -> null_encode_f [0] encode_a -> null_encode_a [0] encode_b -> null_encode_b [0] encode_c -> null_encode_c [0] f(v0, v1, v2) -> null_f [0] The TRS has the following type information: f :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f a :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f b :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f c :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f encArg :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f cons_f :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f cons_c :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f encode_f :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f encode_a :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f encode_b :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f encode_c :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_encArg :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_encode_f :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_encode_a :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_encode_b :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_encode_c :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_f :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(a, b, X) -> f(X, X, X) [1] c -> a [1] c -> b [1] encArg(a) -> a [0] encArg(b) -> b [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(cons_c) -> c [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_a -> a [0] encode_b -> b [0] encode_c -> c [0] encArg(v0) -> null_encArg [0] encode_f(v0, v1, v2) -> null_encode_f [0] encode_a -> null_encode_a [0] encode_b -> null_encode_b [0] encode_c -> null_encode_c [0] f(v0, v1, v2) -> null_f [0] The TRS has the following type information: f :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f a :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f b :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f c :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f encArg :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f cons_f :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f cons_c :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f encode_f :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f encode_a :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f encode_b :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f encode_c :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_encArg :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_encode_f :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_encode_a :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_encode_b :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_encode_c :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_f :: a:b:cons_f:cons_c:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: a => 0 b => 1 cons_c => 2 null_encArg => 0 null_encode_f => 0 null_encode_a => 0 null_encode_b => 0 null_encode_c => 0 null_f => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: c -{ 1 }-> 1 :|: c -{ 1 }-> 0 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> c :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> c :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, x_3 >= 0, x_2 >= 0, z = x_1, z' = x_2, z'' = x_3 encode_f(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 f(z, z', z'') -{ 1 }-> f(X, X, X) :|: z'' = X, X >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 ---------------------------------------- (15) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: c -{ 1 }-> 0 :|: c -{ 1 }-> 1 :|: ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: c -{ 1 }-> 1 :|: c -{ 1 }-> 0 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 1 }-> 0 :|: z = 2 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 1 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_c -{ 1 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, x_3 >= 0, x_2 >= 0, z = x_1, z' = x_2, z'' = x_3 encode_f(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 f(z, z', z'') -{ 1 }-> f(X, X, X) :|: z'' = X, X >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 ---------------------------------------- (17) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: c -{ 1 }-> 1 :|: c -{ 1 }-> 0 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 1 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_c -{ 1 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 1 }-> f(z'', z'', z'') :|: z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ---------------------------------------- (19) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { encode_a } { encode_c } { f } { encode_b } { c } { encArg } { encode_f } ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: c -{ 1 }-> 1 :|: c -{ 1 }-> 0 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 1 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_c -{ 1 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 1 }-> f(z'', z'', z'') :|: z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_a}, {encode_c}, {f}, {encode_b}, {c}, {encArg}, {encode_f} ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: c -{ 1 }-> 1 :|: c -{ 1 }-> 0 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 1 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_c -{ 1 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 1 }-> f(z'', z'', z'') :|: z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_a}, {encode_c}, {f}, {encode_b}, {c}, {encArg}, {encode_f} ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_a after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: c -{ 1 }-> 1 :|: c -{ 1 }-> 0 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 1 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_c -{ 1 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 1 }-> f(z'', z'', z'') :|: z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_a}, {encode_c}, {f}, {encode_b}, {c}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: ?, size: O(1) [0] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_a after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: c -{ 1 }-> 1 :|: c -{ 1 }-> 0 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 1 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_c -{ 1 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 1 }-> f(z'', z'', z'') :|: z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_c}, {f}, {encode_b}, {c}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: c -{ 1 }-> 1 :|: c -{ 1 }-> 0 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 1 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_c -{ 1 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 1 }-> f(z'', z'', z'') :|: z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_c}, {f}, {encode_b}, {c}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_c after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: c -{ 1 }-> 1 :|: c -{ 1 }-> 0 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 1 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_c -{ 1 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 1 }-> f(z'', z'', z'') :|: z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_c}, {f}, {encode_b}, {c}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: ?, size: O(1) [1] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_c after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: c -{ 1 }-> 1 :|: c -{ 1 }-> 0 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 1 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_c -{ 1 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 1 }-> f(z'', z'', z'') :|: z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {f}, {encode_b}, {c}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (33) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: c -{ 1 }-> 1 :|: c -{ 1 }-> 0 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 1 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_c -{ 1 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 1 }-> f(z'', z'', z'') :|: z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {f}, {encode_b}, {c}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: c -{ 1 }-> 1 :|: c -{ 1 }-> 0 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 1 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_c -{ 1 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 1 }-> f(z'', z'', z'') :|: z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {f}, {encode_b}, {c}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [1], size: O(1) [1] f: runtime: ?, size: O(1) [0] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: c -{ 1 }-> 1 :|: c -{ 1 }-> 0 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 1 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_c -{ 1 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 1 }-> f(z'', z'', z'') :|: z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_b}, {c}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [1], size: O(1) [1] f: runtime: O(1) [1], size: O(1) [0] ---------------------------------------- (39) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: c -{ 1 }-> 1 :|: c -{ 1 }-> 0 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 1 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_c -{ 1 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_b}, {c}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [1], size: O(1) [1] f: runtime: O(1) [1], size: O(1) [0] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_b after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: c -{ 1 }-> 1 :|: c -{ 1 }-> 0 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 1 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_c -{ 1 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_b}, {c}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [1], size: O(1) [1] f: runtime: O(1) [1], size: O(1) [0] encode_b: runtime: ?, size: O(1) [1] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_b after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: c -{ 1 }-> 1 :|: c -{ 1 }-> 0 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 1 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_c -{ 1 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {c}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [1], size: O(1) [1] f: runtime: O(1) [1], size: O(1) [0] encode_b: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (45) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: c -{ 1 }-> 1 :|: c -{ 1 }-> 0 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 1 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_c -{ 1 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {c}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [1], size: O(1) [1] f: runtime: O(1) [1], size: O(1) [0] encode_b: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: c after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: c -{ 1 }-> 1 :|: c -{ 1 }-> 0 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 1 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_c -{ 1 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {c}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [1], size: O(1) [1] f: runtime: O(1) [1], size: O(1) [0] encode_b: runtime: O(1) [0], size: O(1) [1] c: runtime: ?, size: O(1) [1] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: c after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: c -{ 1 }-> 1 :|: c -{ 1 }-> 0 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 1 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_c -{ 1 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [1], size: O(1) [1] f: runtime: O(1) [1], size: O(1) [0] encode_b: runtime: O(1) [0], size: O(1) [1] c: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (51) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: c -{ 1 }-> 1 :|: c -{ 1 }-> 0 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 1 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_c -{ 1 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [1], size: O(1) [1] f: runtime: O(1) [1], size: O(1) [0] encode_b: runtime: O(1) [0], size: O(1) [1] c: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (53) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: c -{ 1 }-> 1 :|: c -{ 1 }-> 0 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 1 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_c -{ 1 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [1], size: O(1) [1] f: runtime: O(1) [1], size: O(1) [0] encode_b: runtime: O(1) [0], size: O(1) [1] c: runtime: O(1) [1], size: O(1) [1] encArg: runtime: ?, size: O(1) [1] ---------------------------------------- (55) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 3*z ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: c -{ 1 }-> 1 :|: c -{ 1 }-> 0 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 1 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_c -{ 1 }-> 0 :|: encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [1], size: O(1) [1] f: runtime: O(1) [1], size: O(1) [0] encode_b: runtime: O(1) [0], size: O(1) [1] c: runtime: O(1) [1], size: O(1) [1] encArg: runtime: O(n^1) [1 + 3*z], size: O(1) [1] ---------------------------------------- (57) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: c -{ 1 }-> 1 :|: c -{ 1 }-> 0 :|: encArg(z) -{ 4 + 3*x_1 + 3*x_2 + 3*x_3 }-> s2 :|: s' >= 0, s' <= 1, s'' >= 0, s'' <= 1, s1 >= 0, s1 <= 1, s2 >= 0, s2 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 1 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_c -{ 1 }-> 0 :|: encode_f(z, z', z'') -{ 4 + 3*z + 3*z' + 3*z'' }-> s6 :|: s3 >= 0, s3 <= 1, s4 >= 0, s4 <= 1, s5 >= 0, s5 <= 1, s6 >= 0, s6 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [1], size: O(1) [1] f: runtime: O(1) [1], size: O(1) [0] encode_b: runtime: O(1) [0], size: O(1) [1] c: runtime: O(1) [1], size: O(1) [1] encArg: runtime: O(n^1) [1 + 3*z], size: O(1) [1] ---------------------------------------- (59) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: c -{ 1 }-> 1 :|: c -{ 1 }-> 0 :|: encArg(z) -{ 4 + 3*x_1 + 3*x_2 + 3*x_3 }-> s2 :|: s' >= 0, s' <= 1, s'' >= 0, s'' <= 1, s1 >= 0, s1 <= 1, s2 >= 0, s2 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 1 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_c -{ 1 }-> 0 :|: encode_f(z, z', z'') -{ 4 + 3*z + 3*z' + 3*z'' }-> s6 :|: s3 >= 0, s3 <= 1, s4 >= 0, s4 <= 1, s5 >= 0, s5 <= 1, s6 >= 0, s6 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [1], size: O(1) [1] f: runtime: O(1) [1], size: O(1) [0] encode_b: runtime: O(1) [0], size: O(1) [1] c: runtime: O(1) [1], size: O(1) [1] encArg: runtime: O(n^1) [1 + 3*z], size: O(1) [1] encode_f: runtime: ?, size: O(1) [0] ---------------------------------------- (61) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 4 + 3*z + 3*z' + 3*z'' ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: c -{ 1 }-> 1 :|: c -{ 1 }-> 0 :|: encArg(z) -{ 4 + 3*x_1 + 3*x_2 + 3*x_3 }-> s2 :|: s' >= 0, s' <= 1, s'' >= 0, s'' <= 1, s1 >= 0, s1 <= 1, s2 >= 0, s2 <= 0, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 1 }-> 1 :|: encode_c -{ 0 }-> 0 :|: encode_c -{ 1 }-> 0 :|: encode_f(z, z', z'') -{ 4 + 3*z + 3*z' + 3*z'' }-> s6 :|: s3 >= 0, s3 <= 1, s4 >= 0, s4 <= 1, s5 >= 0, s5 <= 1, s6 >= 0, s6 <= 0, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 f(z, z', z'') -{ 2 }-> s :|: s >= 0, s <= 0, z'' >= 0, z' = 1, z = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] encode_c: runtime: O(1) [1], size: O(1) [1] f: runtime: O(1) [1], size: O(1) [0] encode_b: runtime: O(1) [0], size: O(1) [1] c: runtime: O(1) [1], size: O(1) [1] encArg: runtime: O(n^1) [1 + 3*z], size: O(1) [1] encode_f: runtime: O(n^1) [4 + 3*z + 3*z' + 3*z''], size: O(1) [0] ---------------------------------------- (63) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (64) BOUNDS(1, n^1)