/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(INF, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 268 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) InfiniteLowerBoundProof [FINISHED, 4 ms] (8) BOUNDS(INF, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, XS) minus(X, 0) -> 0 minus(s(X), s(Y)) -> minus(X, Y) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) zWquot(XS, nil) -> nil zWquot(nil, XS) -> nil zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(nil) -> nil encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_sel(x_1, x_2)) -> sel(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2)) -> quot(encArg(x_1), encArg(x_2)) encArg(cons_zWquot(x_1, x_2)) -> zWquot(encArg(x_1), encArg(x_2)) encode_from(x_1) -> from(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_sel(x_1, x_2) -> sel(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_quot(x_1, x_2) -> quot(encArg(x_1), encArg(x_2)) encode_zWquot(x_1, x_2) -> zWquot(encArg(x_1), encArg(x_2)) encode_nil -> nil ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, XS) minus(X, 0) -> 0 minus(s(X), s(Y)) -> minus(X, Y) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) zWquot(XS, nil) -> nil zWquot(nil, XS) -> nil zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS)) The (relative) TRS S consists of the following rules: encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(nil) -> nil encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_sel(x_1, x_2)) -> sel(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2)) -> quot(encArg(x_1), encArg(x_2)) encArg(cons_zWquot(x_1, x_2)) -> zWquot(encArg(x_1), encArg(x_2)) encode_from(x_1) -> from(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_sel(x_1, x_2) -> sel(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_quot(x_1, x_2) -> quot(encArg(x_1), encArg(x_2)) encode_zWquot(x_1, x_2) -> zWquot(encArg(x_1), encArg(x_2)) encode_nil -> nil Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, XS) minus(X, 0) -> 0 minus(s(X), s(Y)) -> minus(X, Y) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) zWquot(XS, nil) -> nil zWquot(nil, XS) -> nil zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS)) The (relative) TRS S consists of the following rules: encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(nil) -> nil encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_sel(x_1, x_2)) -> sel(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2)) -> quot(encArg(x_1), encArg(x_2)) encArg(cons_zWquot(x_1, x_2)) -> zWquot(encArg(x_1), encArg(x_2)) encode_from(x_1) -> from(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_sel(x_1, x_2) -> sel(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_quot(x_1, x_2) -> quot(encArg(x_1), encArg(x_2)) encode_zWquot(x_1, x_2) -> zWquot(encArg(x_1), encArg(x_2)) encode_nil -> nil Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, XS) minus(X, 0) -> 0 minus(s(X), s(Y)) -> minus(X, Y) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) zWquot(XS, nil) -> nil zWquot(nil, XS) -> nil zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), zWquot(XS, YS)) The (relative) TRS S consists of the following rules: encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(nil) -> nil encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_sel(x_1, x_2)) -> sel(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_quot(x_1, x_2)) -> quot(encArg(x_1), encArg(x_2)) encArg(cons_zWquot(x_1, x_2)) -> zWquot(encArg(x_1), encArg(x_2)) encode_from(x_1) -> from(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_sel(x_1, x_2) -> sel(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_quot(x_1, x_2) -> quot(encArg(x_1), encArg(x_2)) encode_zWquot(x_1, x_2) -> zWquot(encArg(x_1), encArg(x_2)) encode_nil -> nil Rewrite Strategy: INNERMOST ---------------------------------------- (7) InfiniteLowerBoundProof (FINISHED) The following loop proves infinite runtime complexity: The rewrite sequence from(X) ->^+ cons(X, from(s(X))) gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. The pumping substitution is [ ]. The result substitution is [X / s(X)]. ---------------------------------------- (8) BOUNDS(INF, INF)