/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^3)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^3). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 30 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (14) CdtProblem (15) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 83 ms] (18) CdtProblem (19) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 79 ms] (20) CdtProblem (21) CdtRuleRemovalProof [UPPER BOUND(ADD(n^3)), 84 ms] (22) CdtProblem (23) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (24) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: b(a(a(x1))) -> a(b(c(x1))) c(a(x1)) -> a(c(x1)) c(b(x1)) -> b(a(x1)) a(a(x1)) -> a(b(a(x1))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(cons_b(x_1)) -> b(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: b(a(a(x1))) -> a(b(c(x1))) c(a(x1)) -> a(c(x1)) c(b(x1)) -> b(a(x1)) a(a(x1)) -> a(b(a(x1))) The (relative) TRS S consists of the following rules: encArg(cons_b(x_1)) -> b(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: b(a(a(x1))) -> a(b(c(x1))) c(a(x1)) -> a(c(x1)) c(b(x1)) -> b(a(x1)) a(a(x1)) -> a(b(a(x1))) The (relative) TRS S consists of the following rules: encArg(cons_b(x_1)) -> b(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_b(z0)) -> b(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_c(z0) -> c(encArg(z0)) b(a(a(z0))) -> a(b(c(z0))) c(a(z0)) -> a(c(z0)) c(b(z0)) -> b(a(z0)) a(a(z0)) -> a(b(a(z0))) Tuples: ENCARG(cons_b(z0)) -> c1(B(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c2(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_a(z0)) -> c3(A(encArg(z0)), ENCARG(z0)) ENCODE_B(z0) -> c4(B(encArg(z0)), ENCARG(z0)) ENCODE_A(z0) -> c5(A(encArg(z0)), ENCARG(z0)) ENCODE_C(z0) -> c6(C(encArg(z0)), ENCARG(z0)) B(a(a(z0))) -> c7(A(b(c(z0))), B(c(z0)), C(z0)) C(a(z0)) -> c8(A(c(z0)), C(z0)) C(b(z0)) -> c9(B(a(z0)), A(z0)) A(a(z0)) -> c10(A(b(a(z0))), B(a(z0)), A(z0)) S tuples: B(a(a(z0))) -> c7(A(b(c(z0))), B(c(z0)), C(z0)) C(a(z0)) -> c8(A(c(z0)), C(z0)) C(b(z0)) -> c9(B(a(z0)), A(z0)) A(a(z0)) -> c10(A(b(a(z0))), B(a(z0)), A(z0)) K tuples:none Defined Rule Symbols: b_1, c_1, a_1, encArg_1, encode_b_1, encode_a_1, encode_c_1 Defined Pair Symbols: ENCARG_1, ENCODE_B_1, ENCODE_A_1, ENCODE_C_1, B_1, C_1, A_1 Compound Symbols: c1_2, c2_2, c3_2, c4_2, c5_2, c6_2, c7_3, c8_2, c9_2, c10_3 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: B(a(a(z0))) -> c7(A(b(c(z0))), B(c(z0)), C(z0)) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_b(z0)) -> b(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_c(z0) -> c(encArg(z0)) b(a(a(z0))) -> a(b(c(z0))) c(a(z0)) -> a(c(z0)) c(b(z0)) -> b(a(z0)) a(a(z0)) -> a(b(a(z0))) Tuples: ENCARG(cons_b(z0)) -> c1(B(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c2(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_a(z0)) -> c3(A(encArg(z0)), ENCARG(z0)) ENCODE_B(z0) -> c4(B(encArg(z0)), ENCARG(z0)) ENCODE_A(z0) -> c5(A(encArg(z0)), ENCARG(z0)) ENCODE_C(z0) -> c6(C(encArg(z0)), ENCARG(z0)) C(a(z0)) -> c8(A(c(z0)), C(z0)) C(b(z0)) -> c9(B(a(z0)), A(z0)) A(a(z0)) -> c10(A(b(a(z0))), B(a(z0)), A(z0)) S tuples: C(a(z0)) -> c8(A(c(z0)), C(z0)) C(b(z0)) -> c9(B(a(z0)), A(z0)) A(a(z0)) -> c10(A(b(a(z0))), B(a(z0)), A(z0)) K tuples:none Defined Rule Symbols: b_1, c_1, a_1, encArg_1, encode_b_1, encode_a_1, encode_c_1 Defined Pair Symbols: ENCARG_1, ENCODE_B_1, ENCODE_A_1, ENCODE_C_1, C_1, A_1 Compound Symbols: c1_2, c2_2, c3_2, c4_2, c5_2, c6_2, c8_2, c9_2, c10_3 ---------------------------------------- (9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 5 trailing tuple parts ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_b(z0)) -> b(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_c(z0) -> c(encArg(z0)) b(a(a(z0))) -> a(b(c(z0))) c(a(z0)) -> a(c(z0)) c(b(z0)) -> b(a(z0)) a(a(z0)) -> a(b(a(z0))) Tuples: ENCARG(cons_c(z0)) -> c2(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_a(z0)) -> c3(A(encArg(z0)), ENCARG(z0)) ENCODE_A(z0) -> c5(A(encArg(z0)), ENCARG(z0)) ENCODE_C(z0) -> c6(C(encArg(z0)), ENCARG(z0)) C(a(z0)) -> c8(A(c(z0)), C(z0)) ENCARG(cons_b(z0)) -> c1(ENCARG(z0)) ENCODE_B(z0) -> c4(ENCARG(z0)) C(b(z0)) -> c9(A(z0)) A(a(z0)) -> c10(A(z0)) S tuples: C(a(z0)) -> c8(A(c(z0)), C(z0)) C(b(z0)) -> c9(A(z0)) A(a(z0)) -> c10(A(z0)) K tuples:none Defined Rule Symbols: b_1, c_1, a_1, encArg_1, encode_b_1, encode_a_1, encode_c_1 Defined Pair Symbols: ENCARG_1, ENCODE_A_1, ENCODE_C_1, C_1, ENCODE_B_1, A_1 Compound Symbols: c2_2, c3_2, c5_2, c6_2, c8_2, c1_1, c4_1, c9_1, c10_1 ---------------------------------------- (11) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_b(z0)) -> b(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_c(z0) -> c(encArg(z0)) b(a(a(z0))) -> a(b(c(z0))) c(a(z0)) -> a(c(z0)) c(b(z0)) -> b(a(z0)) a(a(z0)) -> a(b(a(z0))) Tuples: ENCARG(cons_c(z0)) -> c2(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_a(z0)) -> c3(A(encArg(z0)), ENCARG(z0)) C(a(z0)) -> c8(A(c(z0)), C(z0)) ENCARG(cons_b(z0)) -> c1(ENCARG(z0)) ENCODE_B(z0) -> c4(ENCARG(z0)) C(b(z0)) -> c9(A(z0)) A(a(z0)) -> c10(A(z0)) ENCODE_A(z0) -> c7(A(encArg(z0))) ENCODE_A(z0) -> c7(ENCARG(z0)) ENCODE_C(z0) -> c7(C(encArg(z0))) ENCODE_C(z0) -> c7(ENCARG(z0)) S tuples: C(a(z0)) -> c8(A(c(z0)), C(z0)) C(b(z0)) -> c9(A(z0)) A(a(z0)) -> c10(A(z0)) K tuples:none Defined Rule Symbols: b_1, c_1, a_1, encArg_1, encode_b_1, encode_a_1, encode_c_1 Defined Pair Symbols: ENCARG_1, C_1, ENCODE_B_1, A_1, ENCODE_A_1, ENCODE_C_1 Compound Symbols: c2_2, c3_2, c8_2, c1_1, c4_1, c9_1, c10_1, c7_1 ---------------------------------------- (13) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 3 leading nodes: ENCODE_B(z0) -> c4(ENCARG(z0)) ENCODE_A(z0) -> c7(ENCARG(z0)) ENCODE_C(z0) -> c7(ENCARG(z0)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_b(z0)) -> b(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_c(z0) -> c(encArg(z0)) b(a(a(z0))) -> a(b(c(z0))) c(a(z0)) -> a(c(z0)) c(b(z0)) -> b(a(z0)) a(a(z0)) -> a(b(a(z0))) Tuples: ENCARG(cons_c(z0)) -> c2(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_a(z0)) -> c3(A(encArg(z0)), ENCARG(z0)) C(a(z0)) -> c8(A(c(z0)), C(z0)) ENCARG(cons_b(z0)) -> c1(ENCARG(z0)) C(b(z0)) -> c9(A(z0)) A(a(z0)) -> c10(A(z0)) ENCODE_A(z0) -> c7(A(encArg(z0))) ENCODE_C(z0) -> c7(C(encArg(z0))) S tuples: C(a(z0)) -> c8(A(c(z0)), C(z0)) C(b(z0)) -> c9(A(z0)) A(a(z0)) -> c10(A(z0)) K tuples:none Defined Rule Symbols: b_1, c_1, a_1, encArg_1, encode_b_1, encode_a_1, encode_c_1 Defined Pair Symbols: ENCARG_1, C_1, A_1, ENCODE_A_1, ENCODE_C_1 Compound Symbols: c2_2, c3_2, c8_2, c1_1, c9_1, c10_1, c7_1 ---------------------------------------- (15) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_b(z0) -> b(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_c(z0) -> c(encArg(z0)) b(a(a(z0))) -> a(b(c(z0))) ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_b(z0)) -> b(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) c(a(z0)) -> a(c(z0)) c(b(z0)) -> b(a(z0)) a(a(z0)) -> a(b(a(z0))) Tuples: ENCARG(cons_c(z0)) -> c2(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_a(z0)) -> c3(A(encArg(z0)), ENCARG(z0)) C(a(z0)) -> c8(A(c(z0)), C(z0)) ENCARG(cons_b(z0)) -> c1(ENCARG(z0)) C(b(z0)) -> c9(A(z0)) A(a(z0)) -> c10(A(z0)) ENCODE_A(z0) -> c7(A(encArg(z0))) ENCODE_C(z0) -> c7(C(encArg(z0))) S tuples: C(a(z0)) -> c8(A(c(z0)), C(z0)) C(b(z0)) -> c9(A(z0)) A(a(z0)) -> c10(A(z0)) K tuples:none Defined Rule Symbols: encArg_1, c_1, a_1 Defined Pair Symbols: ENCARG_1, C_1, A_1, ENCODE_A_1, ENCODE_C_1 Compound Symbols: c2_2, c3_2, c8_2, c1_1, c9_1, c10_1, c7_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. C(b(z0)) -> c9(A(z0)) We considered the (Usable) Rules:none And the Tuples: ENCARG(cons_c(z0)) -> c2(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_a(z0)) -> c3(A(encArg(z0)), ENCARG(z0)) C(a(z0)) -> c8(A(c(z0)), C(z0)) ENCARG(cons_b(z0)) -> c1(ENCARG(z0)) C(b(z0)) -> c9(A(z0)) A(a(z0)) -> c10(A(z0)) ENCODE_A(z0) -> c7(A(encArg(z0))) ENCODE_C(z0) -> c7(C(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A(x_1)) = 0 POL(C(x_1)) = [1] POL(ENCARG(x_1)) = x_1 POL(ENCODE_A(x_1)) = 0 POL(ENCODE_C(x_1)) = [1] POL(a(x_1)) = x_1 POL(b(x_1)) = [1] + x_1 POL(c(x_1)) = [1] + x_1 POL(c1(x_1)) = x_1 POL(c10(x_1)) = x_1 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c7(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(c9(x_1)) = x_1 POL(cons_a(x_1)) = [1] + x_1 POL(cons_b(x_1)) = [1] + x_1 POL(cons_c(x_1)) = [1] + x_1 POL(encArg(x_1)) = [1] + x_1 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_b(z0)) -> b(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) c(a(z0)) -> a(c(z0)) c(b(z0)) -> b(a(z0)) a(a(z0)) -> a(b(a(z0))) Tuples: ENCARG(cons_c(z0)) -> c2(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_a(z0)) -> c3(A(encArg(z0)), ENCARG(z0)) C(a(z0)) -> c8(A(c(z0)), C(z0)) ENCARG(cons_b(z0)) -> c1(ENCARG(z0)) C(b(z0)) -> c9(A(z0)) A(a(z0)) -> c10(A(z0)) ENCODE_A(z0) -> c7(A(encArg(z0))) ENCODE_C(z0) -> c7(C(encArg(z0))) S tuples: C(a(z0)) -> c8(A(c(z0)), C(z0)) A(a(z0)) -> c10(A(z0)) K tuples: C(b(z0)) -> c9(A(z0)) Defined Rule Symbols: encArg_1, c_1, a_1 Defined Pair Symbols: ENCARG_1, C_1, A_1, ENCODE_A_1, ENCODE_C_1 Compound Symbols: c2_2, c3_2, c8_2, c1_1, c9_1, c10_1, c7_1 ---------------------------------------- (19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. C(a(z0)) -> c8(A(c(z0)), C(z0)) We considered the (Usable) Rules: c(b(z0)) -> b(a(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) a(a(z0)) -> a(b(a(z0))) c(a(z0)) -> a(c(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) And the Tuples: ENCARG(cons_c(z0)) -> c2(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_a(z0)) -> c3(A(encArg(z0)), ENCARG(z0)) C(a(z0)) -> c8(A(c(z0)), C(z0)) ENCARG(cons_b(z0)) -> c1(ENCARG(z0)) C(b(z0)) -> c9(A(z0)) A(a(z0)) -> c10(A(z0)) ENCODE_A(z0) -> c7(A(encArg(z0))) ENCODE_C(z0) -> c7(C(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A(x_1)) = 0 POL(C(x_1)) = x_1 POL(ENCARG(x_1)) = x_1^2 POL(ENCODE_A(x_1)) = [2] + [2]x_1 + x_1^2 POL(ENCODE_C(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(a(x_1)) = [2] + x_1 POL(b(x_1)) = 0 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c10(x_1)) = x_1 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c7(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(c9(x_1)) = x_1 POL(cons_a(x_1)) = [1] + x_1 POL(cons_b(x_1)) = x_1 POL(cons_c(x_1)) = [2] + x_1 POL(encArg(x_1)) = [2]x_1 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_b(z0)) -> b(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) c(a(z0)) -> a(c(z0)) c(b(z0)) -> b(a(z0)) a(a(z0)) -> a(b(a(z0))) Tuples: ENCARG(cons_c(z0)) -> c2(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_a(z0)) -> c3(A(encArg(z0)), ENCARG(z0)) C(a(z0)) -> c8(A(c(z0)), C(z0)) ENCARG(cons_b(z0)) -> c1(ENCARG(z0)) C(b(z0)) -> c9(A(z0)) A(a(z0)) -> c10(A(z0)) ENCODE_A(z0) -> c7(A(encArg(z0))) ENCODE_C(z0) -> c7(C(encArg(z0))) S tuples: A(a(z0)) -> c10(A(z0)) K tuples: C(b(z0)) -> c9(A(z0)) C(a(z0)) -> c8(A(c(z0)), C(z0)) Defined Rule Symbols: encArg_1, c_1, a_1 Defined Pair Symbols: ENCARG_1, C_1, A_1, ENCODE_A_1, ENCODE_C_1 Compound Symbols: c2_2, c3_2, c8_2, c1_1, c9_1, c10_1, c7_1 ---------------------------------------- (21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^3))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. A(a(z0)) -> c10(A(z0)) We considered the (Usable) Rules: c(b(z0)) -> b(a(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) a(a(z0)) -> a(b(a(z0))) c(a(z0)) -> a(c(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) And the Tuples: ENCARG(cons_c(z0)) -> c2(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_a(z0)) -> c3(A(encArg(z0)), ENCARG(z0)) C(a(z0)) -> c8(A(c(z0)), C(z0)) ENCARG(cons_b(z0)) -> c1(ENCARG(z0)) C(b(z0)) -> c9(A(z0)) A(a(z0)) -> c10(A(z0)) ENCODE_A(z0) -> c7(A(encArg(z0))) ENCODE_C(z0) -> c7(C(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A(x_1)) = x_1 POL(C(x_1)) = [1] + x_1 + x_1^2 POL(ENCARG(x_1)) = x_1^3 POL(ENCODE_A(x_1)) = x_1 POL(ENCODE_C(x_1)) = [1] + x_1 + x_1^2 POL(a(x_1)) = [1] + x_1 POL(b(x_1)) = x_1 POL(c(x_1)) = [1] + x_1 POL(c1(x_1)) = x_1 POL(c10(x_1)) = x_1 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c7(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(c9(x_1)) = x_1 POL(cons_a(x_1)) = [1] + x_1 POL(cons_b(x_1)) = x_1 POL(cons_c(x_1)) = [1] + x_1 POL(encArg(x_1)) = x_1 ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_b(z0)) -> b(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) c(a(z0)) -> a(c(z0)) c(b(z0)) -> b(a(z0)) a(a(z0)) -> a(b(a(z0))) Tuples: ENCARG(cons_c(z0)) -> c2(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_a(z0)) -> c3(A(encArg(z0)), ENCARG(z0)) C(a(z0)) -> c8(A(c(z0)), C(z0)) ENCARG(cons_b(z0)) -> c1(ENCARG(z0)) C(b(z0)) -> c9(A(z0)) A(a(z0)) -> c10(A(z0)) ENCODE_A(z0) -> c7(A(encArg(z0))) ENCODE_C(z0) -> c7(C(encArg(z0))) S tuples:none K tuples: C(b(z0)) -> c9(A(z0)) C(a(z0)) -> c8(A(c(z0)), C(z0)) A(a(z0)) -> c10(A(z0)) Defined Rule Symbols: encArg_1, c_1, a_1 Defined Pair Symbols: ENCARG_1, C_1, A_1, ENCODE_A_1, ENCODE_C_1 Compound Symbols: c2_2, c3_2, c8_2, c1_1, c9_1, c10_1, c7_1 ---------------------------------------- (23) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (24) BOUNDS(1, 1)