/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 44 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (12) CdtProblem (13) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 132 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 42 ms] (18) CdtProblem (19) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 43 ms] (20) CdtProblem (21) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (22) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a(d(x1)) -> d(b(x1)) a(x1) -> b(b(b(x1))) d(x1) -> x1 a(x1) -> x1 b(d(b(x1))) -> a(d(x1)) b(c(x1)) -> c(d(d(x1))) a(c(x1)) -> b(b(c(d(x1)))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_d(x_1)) -> d(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_d(x_1) -> d(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a(d(x1)) -> d(b(x1)) a(x1) -> b(b(b(x1))) d(x1) -> x1 a(x1) -> x1 b(d(b(x1))) -> a(d(x1)) b(c(x1)) -> c(d(d(x1))) a(c(x1)) -> b(b(c(d(x1)))) The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_d(x_1)) -> d(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_d(x_1) -> d(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a(d(x1)) -> d(b(x1)) a(x1) -> b(b(b(x1))) d(x1) -> x1 a(x1) -> x1 b(d(b(x1))) -> a(d(x1)) b(c(x1)) -> c(d(d(x1))) a(c(x1)) -> b(b(c(d(x1)))) The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_d(x_1)) -> d(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_d(x_1) -> d(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_d(z0)) -> d(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_d(z0) -> d(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) a(d(z0)) -> d(b(z0)) a(z0) -> b(b(b(z0))) a(z0) -> z0 a(c(z0)) -> b(b(c(d(z0)))) d(z0) -> z0 b(d(b(z0))) -> a(d(z0)) b(c(z0)) -> c(d(d(z0))) Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c3(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c4(B(encArg(z0)), ENCARG(z0)) ENCODE_A(z0) -> c5(A(encArg(z0)), ENCARG(z0)) ENCODE_D(z0) -> c6(D(encArg(z0)), ENCARG(z0)) ENCODE_B(z0) -> c7(B(encArg(z0)), ENCARG(z0)) ENCODE_C(z0) -> c8(ENCARG(z0)) A(d(z0)) -> c9(D(b(z0)), B(z0)) A(z0) -> c10(B(b(b(z0))), B(b(z0)), B(z0)) A(z0) -> c11 A(c(z0)) -> c12(B(b(c(d(z0)))), B(c(d(z0))), D(z0)) D(z0) -> c13 B(d(b(z0))) -> c14(A(d(z0)), D(z0)) B(c(z0)) -> c15(D(d(z0)), D(z0)) S tuples: A(d(z0)) -> c9(D(b(z0)), B(z0)) A(z0) -> c10(B(b(b(z0))), B(b(z0)), B(z0)) A(z0) -> c11 A(c(z0)) -> c12(B(b(c(d(z0)))), B(c(d(z0))), D(z0)) D(z0) -> c13 B(d(b(z0))) -> c14(A(d(z0)), D(z0)) B(c(z0)) -> c15(D(d(z0)), D(z0)) K tuples:none Defined Rule Symbols: a_1, d_1, b_1, encArg_1, encode_a_1, encode_d_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, ENCODE_A_1, ENCODE_D_1, ENCODE_B_1, ENCODE_C_1, A_1, D_1, B_1 Compound Symbols: c1_1, c2_2, c3_2, c4_2, c5_2, c6_2, c7_2, c8_1, c9_2, c10_3, c11, c12_3, c13, c14_2, c15_2 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 3 leading nodes: ENCODE_C(z0) -> c8(ENCARG(z0)) A(d(z0)) -> c9(D(b(z0)), B(z0)) B(d(b(z0))) -> c14(A(d(z0)), D(z0)) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_d(z0)) -> d(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_d(z0) -> d(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) a(d(z0)) -> d(b(z0)) a(z0) -> b(b(b(z0))) a(z0) -> z0 a(c(z0)) -> b(b(c(d(z0)))) d(z0) -> z0 b(d(b(z0))) -> a(d(z0)) b(c(z0)) -> c(d(d(z0))) Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c3(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c4(B(encArg(z0)), ENCARG(z0)) ENCODE_A(z0) -> c5(A(encArg(z0)), ENCARG(z0)) ENCODE_D(z0) -> c6(D(encArg(z0)), ENCARG(z0)) ENCODE_B(z0) -> c7(B(encArg(z0)), ENCARG(z0)) A(z0) -> c10(B(b(b(z0))), B(b(z0)), B(z0)) A(z0) -> c11 A(c(z0)) -> c12(B(b(c(d(z0)))), B(c(d(z0))), D(z0)) D(z0) -> c13 B(c(z0)) -> c15(D(d(z0)), D(z0)) S tuples: A(z0) -> c10(B(b(b(z0))), B(b(z0)), B(z0)) A(z0) -> c11 A(c(z0)) -> c12(B(b(c(d(z0)))), B(c(d(z0))), D(z0)) D(z0) -> c13 B(c(z0)) -> c15(D(d(z0)), D(z0)) K tuples:none Defined Rule Symbols: a_1, d_1, b_1, encArg_1, encode_a_1, encode_d_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, ENCODE_A_1, ENCODE_D_1, ENCODE_B_1, A_1, D_1, B_1 Compound Symbols: c1_1, c2_2, c3_2, c4_2, c5_2, c6_2, c7_2, c10_3, c11, c12_3, c13, c15_2 ---------------------------------------- (9) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_d(z0)) -> d(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_d(z0) -> d(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) a(d(z0)) -> d(b(z0)) a(z0) -> b(b(b(z0))) a(z0) -> z0 a(c(z0)) -> b(b(c(d(z0)))) d(z0) -> z0 b(d(b(z0))) -> a(d(z0)) b(c(z0)) -> c(d(d(z0))) Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c3(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c4(B(encArg(z0)), ENCARG(z0)) A(z0) -> c11 D(z0) -> c13 ENCODE_A(z0) -> c8(A(encArg(z0))) ENCODE_A(z0) -> c8(ENCARG(z0)) ENCODE_D(z0) -> c8(D(encArg(z0))) ENCODE_D(z0) -> c8(ENCARG(z0)) ENCODE_B(z0) -> c8(B(encArg(z0))) ENCODE_B(z0) -> c8(ENCARG(z0)) A(z0) -> c8(B(b(b(z0)))) A(z0) -> c8(B(b(z0))) A(z0) -> c8(B(z0)) A(c(z0)) -> c8(B(b(c(d(z0))))) A(c(z0)) -> c8(B(c(d(z0)))) A(c(z0)) -> c8(D(z0)) B(c(z0)) -> c8(D(d(z0))) B(c(z0)) -> c8(D(z0)) S tuples: A(z0) -> c11 D(z0) -> c13 A(z0) -> c8(B(b(b(z0)))) A(z0) -> c8(B(b(z0))) A(z0) -> c8(B(z0)) A(c(z0)) -> c8(B(b(c(d(z0))))) A(c(z0)) -> c8(B(c(d(z0)))) A(c(z0)) -> c8(D(z0)) B(c(z0)) -> c8(D(d(z0))) B(c(z0)) -> c8(D(z0)) K tuples:none Defined Rule Symbols: a_1, d_1, b_1, encArg_1, encode_a_1, encode_d_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, A_1, D_1, ENCODE_A_1, ENCODE_D_1, ENCODE_B_1, B_1 Compound Symbols: c1_1, c2_2, c3_2, c4_2, c11, c13, c8_1 ---------------------------------------- (11) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 3 leading nodes: ENCODE_A(z0) -> c8(ENCARG(z0)) ENCODE_D(z0) -> c8(ENCARG(z0)) ENCODE_B(z0) -> c8(ENCARG(z0)) ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_d(z0)) -> d(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_d(z0) -> d(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) a(d(z0)) -> d(b(z0)) a(z0) -> b(b(b(z0))) a(z0) -> z0 a(c(z0)) -> b(b(c(d(z0)))) d(z0) -> z0 b(d(b(z0))) -> a(d(z0)) b(c(z0)) -> c(d(d(z0))) Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c3(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c4(B(encArg(z0)), ENCARG(z0)) A(z0) -> c11 D(z0) -> c13 ENCODE_A(z0) -> c8(A(encArg(z0))) ENCODE_D(z0) -> c8(D(encArg(z0))) ENCODE_B(z0) -> c8(B(encArg(z0))) A(z0) -> c8(B(b(b(z0)))) A(z0) -> c8(B(b(z0))) A(z0) -> c8(B(z0)) A(c(z0)) -> c8(B(b(c(d(z0))))) A(c(z0)) -> c8(B(c(d(z0)))) A(c(z0)) -> c8(D(z0)) B(c(z0)) -> c8(D(d(z0))) B(c(z0)) -> c8(D(z0)) S tuples: A(z0) -> c11 D(z0) -> c13 A(z0) -> c8(B(b(b(z0)))) A(z0) -> c8(B(b(z0))) A(z0) -> c8(B(z0)) A(c(z0)) -> c8(B(b(c(d(z0))))) A(c(z0)) -> c8(B(c(d(z0)))) A(c(z0)) -> c8(D(z0)) B(c(z0)) -> c8(D(d(z0))) B(c(z0)) -> c8(D(z0)) K tuples:none Defined Rule Symbols: a_1, d_1, b_1, encArg_1, encode_a_1, encode_d_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, A_1, D_1, ENCODE_A_1, ENCODE_D_1, ENCODE_B_1, B_1 Compound Symbols: c1_1, c2_2, c3_2, c4_2, c11, c13, c8_1 ---------------------------------------- (13) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_a(z0) -> a(encArg(z0)) encode_d(z0) -> d(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) a(d(z0)) -> d(b(z0)) b(d(b(z0))) -> a(d(z0)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_d(z0)) -> d(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) a(z0) -> b(b(b(z0))) a(z0) -> z0 a(c(z0)) -> b(b(c(d(z0)))) d(z0) -> z0 b(c(z0)) -> c(d(d(z0))) Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c3(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c4(B(encArg(z0)), ENCARG(z0)) A(z0) -> c11 D(z0) -> c13 ENCODE_A(z0) -> c8(A(encArg(z0))) ENCODE_D(z0) -> c8(D(encArg(z0))) ENCODE_B(z0) -> c8(B(encArg(z0))) A(z0) -> c8(B(b(b(z0)))) A(z0) -> c8(B(b(z0))) A(z0) -> c8(B(z0)) A(c(z0)) -> c8(B(b(c(d(z0))))) A(c(z0)) -> c8(B(c(d(z0)))) A(c(z0)) -> c8(D(z0)) B(c(z0)) -> c8(D(d(z0))) B(c(z0)) -> c8(D(z0)) S tuples: A(z0) -> c11 D(z0) -> c13 A(z0) -> c8(B(b(b(z0)))) A(z0) -> c8(B(b(z0))) A(z0) -> c8(B(z0)) A(c(z0)) -> c8(B(b(c(d(z0))))) A(c(z0)) -> c8(B(c(d(z0)))) A(c(z0)) -> c8(D(z0)) B(c(z0)) -> c8(D(d(z0))) B(c(z0)) -> c8(D(z0)) K tuples:none Defined Rule Symbols: encArg_1, a_1, d_1, b_1 Defined Pair Symbols: ENCARG_1, A_1, D_1, ENCODE_A_1, ENCODE_D_1, ENCODE_B_1, B_1 Compound Symbols: c1_1, c2_2, c3_2, c4_2, c11, c13, c8_1 ---------------------------------------- (15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. A(z0) -> c11 A(z0) -> c8(B(b(b(z0)))) A(z0) -> c8(B(b(z0))) A(z0) -> c8(B(z0)) A(c(z0)) -> c8(B(b(c(d(z0))))) A(c(z0)) -> c8(B(c(d(z0)))) A(c(z0)) -> c8(D(z0)) We considered the (Usable) Rules:none And the Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c3(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c4(B(encArg(z0)), ENCARG(z0)) A(z0) -> c11 D(z0) -> c13 ENCODE_A(z0) -> c8(A(encArg(z0))) ENCODE_D(z0) -> c8(D(encArg(z0))) ENCODE_B(z0) -> c8(B(encArg(z0))) A(z0) -> c8(B(b(b(z0)))) A(z0) -> c8(B(b(z0))) A(z0) -> c8(B(z0)) A(c(z0)) -> c8(B(b(c(d(z0))))) A(c(z0)) -> c8(B(c(d(z0)))) A(c(z0)) -> c8(D(z0)) B(c(z0)) -> c8(D(d(z0))) B(c(z0)) -> c8(D(z0)) The order we found is given by the following interpretation: Polynomial interpretation : POL(A(x_1)) = [1] POL(B(x_1)) = 0 POL(D(x_1)) = 0 POL(ENCARG(x_1)) = x_1 POL(ENCODE_A(x_1)) = [1] POL(ENCODE_B(x_1)) = 0 POL(ENCODE_D(x_1)) = x_1 POL(a(x_1)) = [1] + x_1 POL(b(x_1)) = x_1 POL(c(x_1)) = [1] + x_1 POL(c1(x_1)) = x_1 POL(c11) = 0 POL(c13) = 0 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1, x_2)) = x_1 + x_2 POL(c8(x_1)) = x_1 POL(cons_a(x_1)) = [1] + x_1 POL(cons_b(x_1)) = [1] + x_1 POL(cons_d(x_1)) = [1] + x_1 POL(d(x_1)) = x_1 POL(encArg(x_1)) = [1] + x_1 ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_d(z0)) -> d(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) a(z0) -> b(b(b(z0))) a(z0) -> z0 a(c(z0)) -> b(b(c(d(z0)))) d(z0) -> z0 b(c(z0)) -> c(d(d(z0))) Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c3(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c4(B(encArg(z0)), ENCARG(z0)) A(z0) -> c11 D(z0) -> c13 ENCODE_A(z0) -> c8(A(encArg(z0))) ENCODE_D(z0) -> c8(D(encArg(z0))) ENCODE_B(z0) -> c8(B(encArg(z0))) A(z0) -> c8(B(b(b(z0)))) A(z0) -> c8(B(b(z0))) A(z0) -> c8(B(z0)) A(c(z0)) -> c8(B(b(c(d(z0))))) A(c(z0)) -> c8(B(c(d(z0)))) A(c(z0)) -> c8(D(z0)) B(c(z0)) -> c8(D(d(z0))) B(c(z0)) -> c8(D(z0)) S tuples: D(z0) -> c13 B(c(z0)) -> c8(D(d(z0))) B(c(z0)) -> c8(D(z0)) K tuples: A(z0) -> c11 A(z0) -> c8(B(b(b(z0)))) A(z0) -> c8(B(b(z0))) A(z0) -> c8(B(z0)) A(c(z0)) -> c8(B(b(c(d(z0))))) A(c(z0)) -> c8(B(c(d(z0)))) A(c(z0)) -> c8(D(z0)) Defined Rule Symbols: encArg_1, a_1, d_1, b_1 Defined Pair Symbols: ENCARG_1, A_1, D_1, ENCODE_A_1, ENCODE_D_1, ENCODE_B_1, B_1 Compound Symbols: c1_1, c2_2, c3_2, c4_2, c11, c13, c8_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. D(z0) -> c13 We considered the (Usable) Rules:none And the Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c3(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c4(B(encArg(z0)), ENCARG(z0)) A(z0) -> c11 D(z0) -> c13 ENCODE_A(z0) -> c8(A(encArg(z0))) ENCODE_D(z0) -> c8(D(encArg(z0))) ENCODE_B(z0) -> c8(B(encArg(z0))) A(z0) -> c8(B(b(b(z0)))) A(z0) -> c8(B(b(z0))) A(z0) -> c8(B(z0)) A(c(z0)) -> c8(B(b(c(d(z0))))) A(c(z0)) -> c8(B(c(d(z0)))) A(c(z0)) -> c8(D(z0)) B(c(z0)) -> c8(D(d(z0))) B(c(z0)) -> c8(D(z0)) The order we found is given by the following interpretation: Polynomial interpretation : POL(A(x_1)) = [1] POL(B(x_1)) = [1] POL(D(x_1)) = [1] POL(ENCARG(x_1)) = x_1 POL(ENCODE_A(x_1)) = [1] + x_1 POL(ENCODE_B(x_1)) = [1] POL(ENCODE_D(x_1)) = [1] + x_1 POL(a(x_1)) = [1] + x_1 POL(b(x_1)) = x_1 POL(c(x_1)) = [1] + x_1 POL(c1(x_1)) = x_1 POL(c11) = 0 POL(c13) = 0 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1, x_2)) = x_1 + x_2 POL(c8(x_1)) = x_1 POL(cons_a(x_1)) = [1] + x_1 POL(cons_b(x_1)) = [1] + x_1 POL(cons_d(x_1)) = [1] + x_1 POL(d(x_1)) = x_1 POL(encArg(x_1)) = [1] + x_1 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_d(z0)) -> d(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) a(z0) -> b(b(b(z0))) a(z0) -> z0 a(c(z0)) -> b(b(c(d(z0)))) d(z0) -> z0 b(c(z0)) -> c(d(d(z0))) Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c3(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c4(B(encArg(z0)), ENCARG(z0)) A(z0) -> c11 D(z0) -> c13 ENCODE_A(z0) -> c8(A(encArg(z0))) ENCODE_D(z0) -> c8(D(encArg(z0))) ENCODE_B(z0) -> c8(B(encArg(z0))) A(z0) -> c8(B(b(b(z0)))) A(z0) -> c8(B(b(z0))) A(z0) -> c8(B(z0)) A(c(z0)) -> c8(B(b(c(d(z0))))) A(c(z0)) -> c8(B(c(d(z0)))) A(c(z0)) -> c8(D(z0)) B(c(z0)) -> c8(D(d(z0))) B(c(z0)) -> c8(D(z0)) S tuples: B(c(z0)) -> c8(D(d(z0))) B(c(z0)) -> c8(D(z0)) K tuples: A(z0) -> c11 A(z0) -> c8(B(b(b(z0)))) A(z0) -> c8(B(b(z0))) A(z0) -> c8(B(z0)) A(c(z0)) -> c8(B(b(c(d(z0))))) A(c(z0)) -> c8(B(c(d(z0)))) A(c(z0)) -> c8(D(z0)) D(z0) -> c13 Defined Rule Symbols: encArg_1, a_1, d_1, b_1 Defined Pair Symbols: ENCARG_1, A_1, D_1, ENCODE_A_1, ENCODE_D_1, ENCODE_B_1, B_1 Compound Symbols: c1_1, c2_2, c3_2, c4_2, c11, c13, c8_1 ---------------------------------------- (19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. B(c(z0)) -> c8(D(d(z0))) B(c(z0)) -> c8(D(z0)) We considered the (Usable) Rules:none And the Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c3(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c4(B(encArg(z0)), ENCARG(z0)) A(z0) -> c11 D(z0) -> c13 ENCODE_A(z0) -> c8(A(encArg(z0))) ENCODE_D(z0) -> c8(D(encArg(z0))) ENCODE_B(z0) -> c8(B(encArg(z0))) A(z0) -> c8(B(b(b(z0)))) A(z0) -> c8(B(b(z0))) A(z0) -> c8(B(z0)) A(c(z0)) -> c8(B(b(c(d(z0))))) A(c(z0)) -> c8(B(c(d(z0)))) A(c(z0)) -> c8(D(z0)) B(c(z0)) -> c8(D(d(z0))) B(c(z0)) -> c8(D(z0)) The order we found is given by the following interpretation: Polynomial interpretation : POL(A(x_1)) = [1] POL(B(x_1)) = [1] POL(D(x_1)) = 0 POL(ENCARG(x_1)) = x_1 POL(ENCODE_A(x_1)) = [1] + x_1 POL(ENCODE_B(x_1)) = [1] + x_1 POL(ENCODE_D(x_1)) = 0 POL(a(x_1)) = [1] + x_1 POL(b(x_1)) = [1] POL(c(x_1)) = [1] + x_1 POL(c1(x_1)) = x_1 POL(c11) = 0 POL(c13) = 0 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1, x_2)) = x_1 + x_2 POL(c8(x_1)) = x_1 POL(cons_a(x_1)) = [1] + x_1 POL(cons_b(x_1)) = [1] + x_1 POL(cons_d(x_1)) = [1] + x_1 POL(d(x_1)) = [1] POL(encArg(x_1)) = [1] + x_1 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_d(z0)) -> d(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) a(z0) -> b(b(b(z0))) a(z0) -> z0 a(c(z0)) -> b(b(c(d(z0)))) d(z0) -> z0 b(c(z0)) -> c(d(d(z0))) Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c3(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c4(B(encArg(z0)), ENCARG(z0)) A(z0) -> c11 D(z0) -> c13 ENCODE_A(z0) -> c8(A(encArg(z0))) ENCODE_D(z0) -> c8(D(encArg(z0))) ENCODE_B(z0) -> c8(B(encArg(z0))) A(z0) -> c8(B(b(b(z0)))) A(z0) -> c8(B(b(z0))) A(z0) -> c8(B(z0)) A(c(z0)) -> c8(B(b(c(d(z0))))) A(c(z0)) -> c8(B(c(d(z0)))) A(c(z0)) -> c8(D(z0)) B(c(z0)) -> c8(D(d(z0))) B(c(z0)) -> c8(D(z0)) S tuples:none K tuples: A(z0) -> c11 A(z0) -> c8(B(b(b(z0)))) A(z0) -> c8(B(b(z0))) A(z0) -> c8(B(z0)) A(c(z0)) -> c8(B(b(c(d(z0))))) A(c(z0)) -> c8(B(c(d(z0)))) A(c(z0)) -> c8(D(z0)) D(z0) -> c13 B(c(z0)) -> c8(D(d(z0))) B(c(z0)) -> c8(D(z0)) Defined Rule Symbols: encArg_1, a_1, d_1, b_1 Defined Pair Symbols: ENCARG_1, A_1, D_1, ENCODE_A_1, ENCODE_D_1, ENCODE_B_1, B_1 Compound Symbols: c1_1, c2_2, c3_2, c4_2, c11, c13, c8_1 ---------------------------------------- (21) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (22) BOUNDS(1, 1)