/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 57 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (12) CdtProblem (13) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 39 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 35 ms] (18) CdtProblem (19) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (20) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(f(x)) -> g(f(x)) g(g(x)) -> f(x) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(f(x)) -> g(f(x)) g(g(x)) -> f(x) The (relative) TRS S consists of the following rules: encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(f(x)) -> g(f(x)) g(g(x)) -> f(x) The (relative) TRS S consists of the following rules: encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_g(z0) -> g(encArg(z0)) f(f(z0)) -> g(f(z0)) g(g(z0)) -> f(z0) Tuples: ENCARG(cons_f(z0)) -> c(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c1(G(encArg(z0)), ENCARG(z0)) ENCODE_F(z0) -> c2(F(encArg(z0)), ENCARG(z0)) ENCODE_G(z0) -> c3(G(encArg(z0)), ENCARG(z0)) F(f(z0)) -> c4(G(f(z0)), F(z0)) G(g(z0)) -> c5(F(z0)) S tuples: F(f(z0)) -> c4(G(f(z0)), F(z0)) G(g(z0)) -> c5(F(z0)) K tuples:none Defined Rule Symbols: f_1, g_1, encArg_1, encode_f_1, encode_g_1 Defined Pair Symbols: ENCARG_1, ENCODE_F_1, ENCODE_G_1, F_1, G_1 Compound Symbols: c_2, c1_2, c2_2, c3_2, c4_2, c5_1 ---------------------------------------- (7) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_g(z0) -> g(encArg(z0)) f(f(z0)) -> g(f(z0)) g(g(z0)) -> f(z0) Tuples: ENCARG(cons_f(z0)) -> c(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c1(G(encArg(z0)), ENCARG(z0)) ENCODE_F(z0) -> c2(F(encArg(z0)), ENCARG(z0)) ENCODE_G(z0) -> c3(G(encArg(z0)), ENCARG(z0)) G(g(z0)) -> c5(F(z0)) F(f(z0)) -> c4(F(z0)) S tuples: G(g(z0)) -> c5(F(z0)) F(f(z0)) -> c4(F(z0)) K tuples:none Defined Rule Symbols: f_1, g_1, encArg_1, encode_f_1, encode_g_1 Defined Pair Symbols: ENCARG_1, ENCODE_F_1, ENCODE_G_1, G_1, F_1 Compound Symbols: c_2, c1_2, c2_2, c3_2, c5_1, c4_1 ---------------------------------------- (9) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_g(z0) -> g(encArg(z0)) f(f(z0)) -> g(f(z0)) g(g(z0)) -> f(z0) Tuples: ENCARG(cons_f(z0)) -> c(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c1(G(encArg(z0)), ENCARG(z0)) G(g(z0)) -> c5(F(z0)) F(f(z0)) -> c4(F(z0)) ENCODE_F(z0) -> c6(F(encArg(z0))) ENCODE_F(z0) -> c6(ENCARG(z0)) ENCODE_G(z0) -> c6(G(encArg(z0))) ENCODE_G(z0) -> c6(ENCARG(z0)) S tuples: G(g(z0)) -> c5(F(z0)) F(f(z0)) -> c4(F(z0)) K tuples:none Defined Rule Symbols: f_1, g_1, encArg_1, encode_f_1, encode_g_1 Defined Pair Symbols: ENCARG_1, G_1, F_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c_2, c1_2, c5_1, c4_1, c6_1 ---------------------------------------- (11) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_F(z0) -> c6(ENCARG(z0)) ENCODE_G(z0) -> c6(ENCARG(z0)) ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_g(z0) -> g(encArg(z0)) f(f(z0)) -> g(f(z0)) g(g(z0)) -> f(z0) Tuples: ENCARG(cons_f(z0)) -> c(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c1(G(encArg(z0)), ENCARG(z0)) G(g(z0)) -> c5(F(z0)) F(f(z0)) -> c4(F(z0)) ENCODE_F(z0) -> c6(F(encArg(z0))) ENCODE_G(z0) -> c6(G(encArg(z0))) S tuples: G(g(z0)) -> c5(F(z0)) F(f(z0)) -> c4(F(z0)) K tuples:none Defined Rule Symbols: f_1, g_1, encArg_1, encode_f_1, encode_g_1 Defined Pair Symbols: ENCARG_1, G_1, F_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c_2, c1_2, c5_1, c4_1, c6_1 ---------------------------------------- (13) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_f(z0) -> f(encArg(z0)) encode_g(z0) -> g(encArg(z0)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) f(f(z0)) -> g(f(z0)) g(g(z0)) -> f(z0) Tuples: ENCARG(cons_f(z0)) -> c(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c1(G(encArg(z0)), ENCARG(z0)) G(g(z0)) -> c5(F(z0)) F(f(z0)) -> c4(F(z0)) ENCODE_F(z0) -> c6(F(encArg(z0))) ENCODE_G(z0) -> c6(G(encArg(z0))) S tuples: G(g(z0)) -> c5(F(z0)) F(f(z0)) -> c4(F(z0)) K tuples:none Defined Rule Symbols: encArg_1, f_1, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c_2, c1_2, c5_1, c4_1, c6_1 ---------------------------------------- (15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. G(g(z0)) -> c5(F(z0)) We considered the (Usable) Rules:none And the Tuples: ENCARG(cons_f(z0)) -> c(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c1(G(encArg(z0)), ENCARG(z0)) G(g(z0)) -> c5(F(z0)) F(f(z0)) -> c4(F(z0)) ENCODE_F(z0) -> c6(F(encArg(z0))) ENCODE_G(z0) -> c6(G(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(ENCARG(x_1)) = x_1 POL(ENCODE_F(x_1)) = x_1 POL(ENCODE_G(x_1)) = [1] POL(F(x_1)) = 0 POL(G(x_1)) = [1] POL(c(x_1, x_2)) = x_1 + x_2 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c4(x_1)) = x_1 POL(c5(x_1)) = x_1 POL(c6(x_1)) = x_1 POL(cons_f(x_1)) = [1] + x_1 POL(cons_g(x_1)) = [1] + x_1 POL(encArg(x_1)) = [1] + x_1 POL(f(x_1)) = [1] + x_1 POL(g(x_1)) = [1] + x_1 ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) f(f(z0)) -> g(f(z0)) g(g(z0)) -> f(z0) Tuples: ENCARG(cons_f(z0)) -> c(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c1(G(encArg(z0)), ENCARG(z0)) G(g(z0)) -> c5(F(z0)) F(f(z0)) -> c4(F(z0)) ENCODE_F(z0) -> c6(F(encArg(z0))) ENCODE_G(z0) -> c6(G(encArg(z0))) S tuples: F(f(z0)) -> c4(F(z0)) K tuples: G(g(z0)) -> c5(F(z0)) Defined Rule Symbols: encArg_1, f_1, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c_2, c1_2, c5_1, c4_1, c6_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(f(z0)) -> c4(F(z0)) We considered the (Usable) Rules: f(f(z0)) -> g(f(z0)) g(g(z0)) -> f(z0) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) And the Tuples: ENCARG(cons_f(z0)) -> c(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c1(G(encArg(z0)), ENCARG(z0)) G(g(z0)) -> c5(F(z0)) F(f(z0)) -> c4(F(z0)) ENCODE_F(z0) -> c6(F(encArg(z0))) ENCODE_G(z0) -> c6(G(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(ENCARG(x_1)) = x_1^2 POL(ENCODE_F(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(ENCODE_G(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(F(x_1)) = x_1 POL(G(x_1)) = [2] + [2]x_1 POL(c(x_1, x_2)) = x_1 + x_2 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c4(x_1)) = x_1 POL(c5(x_1)) = x_1 POL(c6(x_1)) = x_1 POL(cons_f(x_1)) = [2] + x_1 POL(cons_g(x_1)) = [2] + x_1 POL(encArg(x_1)) = x_1 POL(f(x_1)) = [2] + x_1 POL(g(x_1)) = [1] + x_1 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) f(f(z0)) -> g(f(z0)) g(g(z0)) -> f(z0) Tuples: ENCARG(cons_f(z0)) -> c(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c1(G(encArg(z0)), ENCARG(z0)) G(g(z0)) -> c5(F(z0)) F(f(z0)) -> c4(F(z0)) ENCODE_F(z0) -> c6(F(encArg(z0))) ENCODE_G(z0) -> c6(G(encArg(z0))) S tuples:none K tuples: G(g(z0)) -> c5(F(z0)) F(f(z0)) -> c4(F(z0)) Defined Rule Symbols: encArg_1, f_1, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c_2, c1_2, c5_1, c4_1, c6_1 ---------------------------------------- (19) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (20) BOUNDS(1, 1)