/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 194 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 533 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 40 ms] (18) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: h(z, e(x)) -> h(c(z), d(z, x)) d(z, g(0, 0)) -> e(0) d(z, g(x, y)) -> g(e(x), d(z, y)) d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y))) g(e(x), e(y)) -> e(g(x, y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(e(x_1)) -> e(encArg(x_1)) encArg(c(x_1)) -> c(encArg(x_1)) encArg(0) -> 0 encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(cons_d(x_1, x_2)) -> d(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_e(x_1) -> e(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1, x_2) -> d(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0 ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: h(z, e(x)) -> h(c(z), d(z, x)) d(z, g(0, 0)) -> e(0) d(z, g(x, y)) -> g(e(x), d(z, y)) d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y))) g(e(x), e(y)) -> e(g(x, y)) The (relative) TRS S consists of the following rules: encArg(e(x_1)) -> e(encArg(x_1)) encArg(c(x_1)) -> c(encArg(x_1)) encArg(0) -> 0 encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(cons_d(x_1, x_2)) -> d(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_e(x_1) -> e(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1, x_2) -> d(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: h(z, e(x)) -> h(c(z), d(z, x)) d(z, g(0, 0)) -> e(0) d(z, g(x, y)) -> g(e(x), d(z, y)) d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y))) g(e(x), e(y)) -> e(g(x, y)) The (relative) TRS S consists of the following rules: encArg(e(x_1)) -> e(encArg(x_1)) encArg(c(x_1)) -> c(encArg(x_1)) encArg(0) -> 0 encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(cons_d(x_1, x_2)) -> d(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_e(x_1) -> e(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1, x_2) -> d(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: h(z, e(x)) -> h(c(z), d(z, x)) d(z, g(0', 0')) -> e(0') d(z, g(x, y)) -> g(e(x), d(z, y)) d(c(z), g(g(x, y), 0')) -> g(d(c(z), g(x, y)), d(z, g(x, y))) g(e(x), e(y)) -> e(g(x, y)) The (relative) TRS S consists of the following rules: encArg(e(x_1)) -> e(encArg(x_1)) encArg(c(x_1)) -> c(encArg(x_1)) encArg(0') -> 0' encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(cons_d(x_1, x_2)) -> d(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_e(x_1) -> e(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1, x_2) -> d(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0' Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: h(z, e(x)) -> h(c(z), d(z, x)) d(z, g(0', 0')) -> e(0') d(z, g(x, y)) -> g(e(x), d(z, y)) d(c(z), g(g(x, y), 0')) -> g(d(c(z), g(x, y)), d(z, g(x, y))) g(e(x), e(y)) -> e(g(x, y)) encArg(e(x_1)) -> e(encArg(x_1)) encArg(c(x_1)) -> c(encArg(x_1)) encArg(0') -> 0' encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(cons_d(x_1, x_2)) -> d(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_e(x_1) -> e(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1, x_2) -> d(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0' Types: h :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g e :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g c :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g d :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g g :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g 0' :: e:c:0':cons_h:cons_d:cons_g encArg :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g cons_h :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g cons_d :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g cons_g :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g encode_h :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g encode_e :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g encode_c :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g encode_d :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g encode_g :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g encode_0 :: e:c:0':cons_h:cons_d:cons_g hole_e:c:0':cons_h:cons_d:cons_g1_3 :: e:c:0':cons_h:cons_d:cons_g gen_e:c:0':cons_h:cons_d:cons_g2_3 :: Nat -> e:c:0':cons_h:cons_d:cons_g ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: h, d, g, encArg They will be analysed ascendingly in the following order: d < h h < encArg g < d d < encArg g < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: h(z, e(x)) -> h(c(z), d(z, x)) d(z, g(0', 0')) -> e(0') d(z, g(x, y)) -> g(e(x), d(z, y)) d(c(z), g(g(x, y), 0')) -> g(d(c(z), g(x, y)), d(z, g(x, y))) g(e(x), e(y)) -> e(g(x, y)) encArg(e(x_1)) -> e(encArg(x_1)) encArg(c(x_1)) -> c(encArg(x_1)) encArg(0') -> 0' encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(cons_d(x_1, x_2)) -> d(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_e(x_1) -> e(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1, x_2) -> d(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0' Types: h :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g e :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g c :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g d :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g g :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g 0' :: e:c:0':cons_h:cons_d:cons_g encArg :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g cons_h :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g cons_d :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g cons_g :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g encode_h :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g encode_e :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g encode_c :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g encode_d :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g encode_g :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g encode_0 :: e:c:0':cons_h:cons_d:cons_g hole_e:c:0':cons_h:cons_d:cons_g1_3 :: e:c:0':cons_h:cons_d:cons_g gen_e:c:0':cons_h:cons_d:cons_g2_3 :: Nat -> e:c:0':cons_h:cons_d:cons_g Generator Equations: gen_e:c:0':cons_h:cons_d:cons_g2_3(0) <=> 0' gen_e:c:0':cons_h:cons_d:cons_g2_3(+(x, 1)) <=> e(gen_e:c:0':cons_h:cons_d:cons_g2_3(x)) The following defined symbols remain to be analysed: g, h, d, encArg They will be analysed ascendingly in the following order: d < h h < encArg g < d d < encArg g < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: g(gen_e:c:0':cons_h:cons_d:cons_g2_3(+(1, n4_3)), gen_e:c:0':cons_h:cons_d:cons_g2_3(+(1, n4_3))) -> *3_3, rt in Omega(n4_3) Induction Base: g(gen_e:c:0':cons_h:cons_d:cons_g2_3(+(1, 0)), gen_e:c:0':cons_h:cons_d:cons_g2_3(+(1, 0))) Induction Step: g(gen_e:c:0':cons_h:cons_d:cons_g2_3(+(1, +(n4_3, 1))), gen_e:c:0':cons_h:cons_d:cons_g2_3(+(1, +(n4_3, 1)))) ->_R^Omega(1) e(g(gen_e:c:0':cons_h:cons_d:cons_g2_3(+(1, n4_3)), gen_e:c:0':cons_h:cons_d:cons_g2_3(+(1, n4_3)))) ->_IH e(*3_3) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: h(z, e(x)) -> h(c(z), d(z, x)) d(z, g(0', 0')) -> e(0') d(z, g(x, y)) -> g(e(x), d(z, y)) d(c(z), g(g(x, y), 0')) -> g(d(c(z), g(x, y)), d(z, g(x, y))) g(e(x), e(y)) -> e(g(x, y)) encArg(e(x_1)) -> e(encArg(x_1)) encArg(c(x_1)) -> c(encArg(x_1)) encArg(0') -> 0' encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(cons_d(x_1, x_2)) -> d(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_e(x_1) -> e(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1, x_2) -> d(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0' Types: h :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g e :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g c :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g d :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g g :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g 0' :: e:c:0':cons_h:cons_d:cons_g encArg :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g cons_h :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g cons_d :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g cons_g :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g encode_h :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g encode_e :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g encode_c :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g encode_d :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g encode_g :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g encode_0 :: e:c:0':cons_h:cons_d:cons_g hole_e:c:0':cons_h:cons_d:cons_g1_3 :: e:c:0':cons_h:cons_d:cons_g gen_e:c:0':cons_h:cons_d:cons_g2_3 :: Nat -> e:c:0':cons_h:cons_d:cons_g Generator Equations: gen_e:c:0':cons_h:cons_d:cons_g2_3(0) <=> 0' gen_e:c:0':cons_h:cons_d:cons_g2_3(+(x, 1)) <=> e(gen_e:c:0':cons_h:cons_d:cons_g2_3(x)) The following defined symbols remain to be analysed: g, h, d, encArg They will be analysed ascendingly in the following order: d < h h < encArg g < d d < encArg g < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Innermost TRS: Rules: h(z, e(x)) -> h(c(z), d(z, x)) d(z, g(0', 0')) -> e(0') d(z, g(x, y)) -> g(e(x), d(z, y)) d(c(z), g(g(x, y), 0')) -> g(d(c(z), g(x, y)), d(z, g(x, y))) g(e(x), e(y)) -> e(g(x, y)) encArg(e(x_1)) -> e(encArg(x_1)) encArg(c(x_1)) -> c(encArg(x_1)) encArg(0') -> 0' encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encArg(cons_d(x_1, x_2)) -> d(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) encode_e(x_1) -> e(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1, x_2) -> d(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0' Types: h :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g e :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g c :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g d :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g g :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g 0' :: e:c:0':cons_h:cons_d:cons_g encArg :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g cons_h :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g cons_d :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g cons_g :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g encode_h :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g encode_e :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g encode_c :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g encode_d :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g encode_g :: e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g -> e:c:0':cons_h:cons_d:cons_g encode_0 :: e:c:0':cons_h:cons_d:cons_g hole_e:c:0':cons_h:cons_d:cons_g1_3 :: e:c:0':cons_h:cons_d:cons_g gen_e:c:0':cons_h:cons_d:cons_g2_3 :: Nat -> e:c:0':cons_h:cons_d:cons_g Lemmas: g(gen_e:c:0':cons_h:cons_d:cons_g2_3(+(1, n4_3)), gen_e:c:0':cons_h:cons_d:cons_g2_3(+(1, n4_3))) -> *3_3, rt in Omega(n4_3) Generator Equations: gen_e:c:0':cons_h:cons_d:cons_g2_3(0) <=> 0' gen_e:c:0':cons_h:cons_d:cons_g2_3(+(x, 1)) <=> e(gen_e:c:0':cons_h:cons_d:cons_g2_3(x)) The following defined symbols remain to be analysed: d, h, encArg They will be analysed ascendingly in the following order: d < h h < encArg d < encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_e:c:0':cons_h:cons_d:cons_g2_3(n590_3)) -> gen_e:c:0':cons_h:cons_d:cons_g2_3(n590_3), rt in Omega(0) Induction Base: encArg(gen_e:c:0':cons_h:cons_d:cons_g2_3(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_e:c:0':cons_h:cons_d:cons_g2_3(+(n590_3, 1))) ->_R^Omega(0) e(encArg(gen_e:c:0':cons_h:cons_d:cons_g2_3(n590_3))) ->_IH e(gen_e:c:0':cons_h:cons_d:cons_g2_3(c591_3)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (18) BOUNDS(1, INF)