/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 155 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 269 ms] (12) proven lower bound (13) LowerBoundPropagationProof [FINISHED, 0 ms] (14) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: .(1, x) -> x .(x, 1) -> x .(i(x), x) -> 1 .(x, i(x)) -> 1 i(1) -> 1 i(i(x)) -> x .(i(y), .(y, z)) -> z .(y, .(i(y), z)) -> z .(.(x, y), z) -> .(x, .(y, z)) i(.(x, y)) -> .(i(y), i(x)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(1) -> 1 encArg(cons_.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_i(x_1) -> i(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: .(1, x) -> x .(x, 1) -> x .(i(x), x) -> 1 .(x, i(x)) -> 1 i(1) -> 1 i(i(x)) -> x .(i(y), .(y, z)) -> z .(y, .(i(y), z)) -> z .(.(x, y), z) -> .(x, .(y, z)) i(.(x, y)) -> .(i(y), i(x)) The (relative) TRS S consists of the following rules: encArg(1) -> 1 encArg(cons_.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_i(x_1) -> i(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: .(1, x) -> x .(x, 1) -> x .(i(x), x) -> 1 .(x, i(x)) -> 1 i(1) -> 1 i(i(x)) -> x .(i(y), .(y, z)) -> z .(y, .(i(y), z)) -> z .(.(x, y), z) -> .(x, .(y, z)) i(.(x, y)) -> .(i(y), i(x)) The (relative) TRS S consists of the following rules: encArg(1) -> 1 encArg(cons_.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_i(x_1) -> i(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: .(1', x) -> x .(x, 1') -> x .(i(x), x) -> 1' .(x, i(x)) -> 1' i(1') -> 1' i(i(x)) -> x .(i(y), .(y, z)) -> z .(y, .(i(y), z)) -> z .(.(x, y), z) -> .(x, .(y, z)) i(.(x, y)) -> .(i(y), i(x)) The (relative) TRS S consists of the following rules: encArg(1') -> 1' encArg(cons_.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_1 -> 1' encode_i(x_1) -> i(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: .(1', x) -> x .(x, 1') -> x .(i(x), x) -> 1' .(x, i(x)) -> 1' i(1') -> 1' i(i(x)) -> x .(i(y), .(y, z)) -> z .(y, .(i(y), z)) -> z .(.(x, y), z) -> .(x, .(y, z)) i(.(x, y)) -> .(i(y), i(x)) encArg(1') -> 1' encArg(cons_.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_1 -> 1' encode_i(x_1) -> i(encArg(x_1)) Types: . :: 1':cons_.:cons_i -> 1':cons_.:cons_i -> 1':cons_.:cons_i 1' :: 1':cons_.:cons_i i :: 1':cons_.:cons_i -> 1':cons_.:cons_i encArg :: 1':cons_.:cons_i -> 1':cons_.:cons_i cons_. :: 1':cons_.:cons_i -> 1':cons_.:cons_i -> 1':cons_.:cons_i cons_i :: 1':cons_.:cons_i -> 1':cons_.:cons_i encode_. :: 1':cons_.:cons_i -> 1':cons_.:cons_i -> 1':cons_.:cons_i encode_1 :: 1':cons_.:cons_i encode_i :: 1':cons_.:cons_i -> 1':cons_.:cons_i hole_1':cons_.:cons_i1_0 :: 1':cons_.:cons_i gen_1':cons_.:cons_i2_0 :: Nat -> 1':cons_.:cons_i ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: ., i, encArg They will be analysed ascendingly in the following order: . < i . < encArg i < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: .(1', x) -> x .(x, 1') -> x .(i(x), x) -> 1' .(x, i(x)) -> 1' i(1') -> 1' i(i(x)) -> x .(i(y), .(y, z)) -> z .(y, .(i(y), z)) -> z .(.(x, y), z) -> .(x, .(y, z)) i(.(x, y)) -> .(i(y), i(x)) encArg(1') -> 1' encArg(cons_.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_1 -> 1' encode_i(x_1) -> i(encArg(x_1)) Types: . :: 1':cons_.:cons_i -> 1':cons_.:cons_i -> 1':cons_.:cons_i 1' :: 1':cons_.:cons_i i :: 1':cons_.:cons_i -> 1':cons_.:cons_i encArg :: 1':cons_.:cons_i -> 1':cons_.:cons_i cons_. :: 1':cons_.:cons_i -> 1':cons_.:cons_i -> 1':cons_.:cons_i cons_i :: 1':cons_.:cons_i -> 1':cons_.:cons_i encode_. :: 1':cons_.:cons_i -> 1':cons_.:cons_i -> 1':cons_.:cons_i encode_1 :: 1':cons_.:cons_i encode_i :: 1':cons_.:cons_i -> 1':cons_.:cons_i hole_1':cons_.:cons_i1_0 :: 1':cons_.:cons_i gen_1':cons_.:cons_i2_0 :: Nat -> 1':cons_.:cons_i Generator Equations: gen_1':cons_.:cons_i2_0(0) <=> 1' gen_1':cons_.:cons_i2_0(+(x, 1)) <=> cons_.(1', gen_1':cons_.:cons_i2_0(x)) The following defined symbols remain to be analysed: ., i, encArg They will be analysed ascendingly in the following order: . < i . < encArg i < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_1':cons_.:cons_i2_0(n229_0)) -> gen_1':cons_.:cons_i2_0(0), rt in Omega(n229_0) Induction Base: encArg(gen_1':cons_.:cons_i2_0(0)) ->_R^Omega(0) 1' Induction Step: encArg(gen_1':cons_.:cons_i2_0(+(n229_0, 1))) ->_R^Omega(0) .(encArg(1'), encArg(gen_1':cons_.:cons_i2_0(n229_0))) ->_R^Omega(0) .(1', encArg(gen_1':cons_.:cons_i2_0(n229_0))) ->_IH .(1', gen_1':cons_.:cons_i2_0(0)) ->_R^Omega(1) gen_1':cons_.:cons_i2_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: .(1', x) -> x .(x, 1') -> x .(i(x), x) -> 1' .(x, i(x)) -> 1' i(1') -> 1' i(i(x)) -> x .(i(y), .(y, z)) -> z .(y, .(i(y), z)) -> z .(.(x, y), z) -> .(x, .(y, z)) i(.(x, y)) -> .(i(y), i(x)) encArg(1') -> 1' encArg(cons_.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_1 -> 1' encode_i(x_1) -> i(encArg(x_1)) Types: . :: 1':cons_.:cons_i -> 1':cons_.:cons_i -> 1':cons_.:cons_i 1' :: 1':cons_.:cons_i i :: 1':cons_.:cons_i -> 1':cons_.:cons_i encArg :: 1':cons_.:cons_i -> 1':cons_.:cons_i cons_. :: 1':cons_.:cons_i -> 1':cons_.:cons_i -> 1':cons_.:cons_i cons_i :: 1':cons_.:cons_i -> 1':cons_.:cons_i encode_. :: 1':cons_.:cons_i -> 1':cons_.:cons_i -> 1':cons_.:cons_i encode_1 :: 1':cons_.:cons_i encode_i :: 1':cons_.:cons_i -> 1':cons_.:cons_i hole_1':cons_.:cons_i1_0 :: 1':cons_.:cons_i gen_1':cons_.:cons_i2_0 :: Nat -> 1':cons_.:cons_i Generator Equations: gen_1':cons_.:cons_i2_0(0) <=> 1' gen_1':cons_.:cons_i2_0(+(x, 1)) <=> cons_.(1', gen_1':cons_.:cons_i2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (13) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (14) BOUNDS(n^1, INF)