/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 351 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(h, h, h, x) -> s(x) a(l, x, s(y), h) -> a(l, x, y, s(h)) a(l, x, s(y), s(z)) -> a(l, x, y, a(l, x, s(y), z)) a(l, s(x), h, z) -> a(l, x, z, z) a(s(l), h, h, z) -> a(l, z, h, z) +(x, h) -> x +(h, x) -> x +(s(x), s(y)) -> s(s(+(x, y))) +(+(x, y), z) -> +(x, +(y, z)) s(h) -> 1 app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h, h), l)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(h) -> h encArg(1) -> 1 encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_a(x_1, x_2, x_3, x_4)) -> a(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encode_a(x_1, x_2, x_3, x_4) -> a(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_h -> h encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(h, h, h, x) -> s(x) a(l, x, s(y), h) -> a(l, x, y, s(h)) a(l, x, s(y), s(z)) -> a(l, x, y, a(l, x, s(y), z)) a(l, s(x), h, z) -> a(l, x, z, z) a(s(l), h, h, z) -> a(l, z, h, z) +(x, h) -> x +(h, x) -> x +(s(x), s(y)) -> s(s(+(x, y))) +(+(x, y), z) -> +(x, +(y, z)) s(h) -> 1 app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h, h), l)) The (relative) TRS S consists of the following rules: encArg(h) -> h encArg(1) -> 1 encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_a(x_1, x_2, x_3, x_4)) -> a(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encode_a(x_1, x_2, x_3, x_4) -> a(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_h -> h encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(h, h, h, x) -> s(x) a(l, x, s(y), h) -> a(l, x, y, s(h)) a(l, x, s(y), s(z)) -> a(l, x, y, a(l, x, s(y), z)) a(l, s(x), h, z) -> a(l, x, z, z) a(s(l), h, h, z) -> a(l, z, h, z) +(x, h) -> x +(h, x) -> x +(s(x), s(y)) -> s(s(+(x, y))) +(+(x, y), z) -> +(x, +(y, z)) s(h) -> 1 app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h, h), l)) The (relative) TRS S consists of the following rules: encArg(h) -> h encArg(1) -> 1 encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_a(x_1, x_2, x_3, x_4)) -> a(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encode_a(x_1, x_2, x_3, x_4) -> a(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_h -> h encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(h, h, h, x) -> s(x) a(l, x, s(y), h) -> a(l, x, y, s(h)) a(l, x, s(y), s(z)) -> a(l, x, y, a(l, x, s(y), z)) a(l, s(x), h, z) -> a(l, x, z, z) a(s(l), h, h, z) -> a(l, z, h, z) +(x, h) -> x +(h, x) -> x +(s(x), s(y)) -> s(s(+(x, y))) +(+(x, y), z) -> +(x, +(y, z)) s(h) -> 1 app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h, h), l)) The (relative) TRS S consists of the following rules: encArg(h) -> h encArg(1) -> 1 encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_a(x_1, x_2, x_3, x_4)) -> a(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encode_a(x_1, x_2, x_3, x_4) -> a(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_h -> h encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence app(cons(x, l), k) ->^+ cons(x, app(l, k)) gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. The pumping substitution is [l / cons(x, l)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(h, h, h, x) -> s(x) a(l, x, s(y), h) -> a(l, x, y, s(h)) a(l, x, s(y), s(z)) -> a(l, x, y, a(l, x, s(y), z)) a(l, s(x), h, z) -> a(l, x, z, z) a(s(l), h, h, z) -> a(l, z, h, z) +(x, h) -> x +(h, x) -> x +(s(x), s(y)) -> s(s(+(x, y))) +(+(x, y), z) -> +(x, +(y, z)) s(h) -> 1 app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h, h), l)) The (relative) TRS S consists of the following rules: encArg(h) -> h encArg(1) -> 1 encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_a(x_1, x_2, x_3, x_4)) -> a(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encode_a(x_1, x_2, x_3, x_4) -> a(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_h -> h encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(h, h, h, x) -> s(x) a(l, x, s(y), h) -> a(l, x, y, s(h)) a(l, x, s(y), s(z)) -> a(l, x, y, a(l, x, s(y), z)) a(l, s(x), h, z) -> a(l, x, z, z) a(s(l), h, h, z) -> a(l, z, h, z) +(x, h) -> x +(h, x) -> x +(s(x), s(y)) -> s(s(+(x, y))) +(+(x, y), z) -> +(x, +(y, z)) s(h) -> 1 app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(a(x, y, h, h), l)) The (relative) TRS S consists of the following rules: encArg(h) -> h encArg(1) -> 1 encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_a(x_1, x_2, x_3, x_4)) -> a(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encode_a(x_1, x_2, x_3, x_4) -> a(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_h -> h encode_s(x_1) -> s(encArg(x_1)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) Rewrite Strategy: INNERMOST