/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 883 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) double(0) -> 0 double(s(x)) -> s(s(double(x))) log(0) -> logError log(s(x)) -> loop(s(x), s(0), 0) loop(x, s(y), z) -> if(le(x, s(y)), x, s(y), z) if(true, x, y, z) -> z if(false, x, y, z) -> loop(x, double(y), s(z)) maplog(xs) -> mapIter(xs, nil) mapIter(xs, ys) -> ifmap(isempty(xs), xs, ys) ifmap(true, xs, ys) -> ys ifmap(false, xs, ys) -> mapIter(droplast(xs), cons(log(last(xs)), ys)) isempty(nil) -> true isempty(cons(x, xs)) -> false last(nil) -> error last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) droplast(nil) -> nil droplast(cons(x, nil)) -> nil droplast(cons(x, cons(y, xs))) -> cons(x, droplast(cons(y, xs))) a -> b a -> c S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(false) -> false encArg(true) -> true encArg(logError) -> logError encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(error) -> error encArg(b) -> b encArg(c) -> c encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_log(x_1)) -> log(encArg(x_1)) encArg(cons_loop(x_1, x_2, x_3)) -> loop(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_if(x_1, x_2, x_3, x_4)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_maplog(x_1)) -> maplog(encArg(x_1)) encArg(cons_mapIter(x_1, x_2)) -> mapIter(encArg(x_1), encArg(x_2)) encArg(cons_ifmap(x_1, x_2, x_3)) -> ifmap(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_isempty(x_1)) -> isempty(encArg(x_1)) encArg(cons_last(x_1)) -> last(encArg(x_1)) encArg(cons_droplast(x_1)) -> droplast(encArg(x_1)) encArg(cons_a) -> a encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0 encode_false -> false encode_true -> true encode_double(x_1) -> double(encArg(x_1)) encode_log(x_1) -> log(encArg(x_1)) encode_logError -> logError encode_loop(x_1, x_2, x_3) -> loop(encArg(x_1), encArg(x_2), encArg(x_3)) encode_if(x_1, x_2, x_3, x_4) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_maplog(x_1) -> maplog(encArg(x_1)) encode_mapIter(x_1, x_2) -> mapIter(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_ifmap(x_1, x_2, x_3) -> ifmap(encArg(x_1), encArg(x_2), encArg(x_3)) encode_isempty(x_1) -> isempty(encArg(x_1)) encode_droplast(x_1) -> droplast(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_last(x_1) -> last(encArg(x_1)) encode_error -> error encode_a -> a encode_b -> b encode_c -> c ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) double(0) -> 0 double(s(x)) -> s(s(double(x))) log(0) -> logError log(s(x)) -> loop(s(x), s(0), 0) loop(x, s(y), z) -> if(le(x, s(y)), x, s(y), z) if(true, x, y, z) -> z if(false, x, y, z) -> loop(x, double(y), s(z)) maplog(xs) -> mapIter(xs, nil) mapIter(xs, ys) -> ifmap(isempty(xs), xs, ys) ifmap(true, xs, ys) -> ys ifmap(false, xs, ys) -> mapIter(droplast(xs), cons(log(last(xs)), ys)) isempty(nil) -> true isempty(cons(x, xs)) -> false last(nil) -> error last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) droplast(nil) -> nil droplast(cons(x, nil)) -> nil droplast(cons(x, cons(y, xs))) -> cons(x, droplast(cons(y, xs))) a -> b a -> c The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(false) -> false encArg(true) -> true encArg(logError) -> logError encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(error) -> error encArg(b) -> b encArg(c) -> c encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_log(x_1)) -> log(encArg(x_1)) encArg(cons_loop(x_1, x_2, x_3)) -> loop(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_if(x_1, x_2, x_3, x_4)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_maplog(x_1)) -> maplog(encArg(x_1)) encArg(cons_mapIter(x_1, x_2)) -> mapIter(encArg(x_1), encArg(x_2)) encArg(cons_ifmap(x_1, x_2, x_3)) -> ifmap(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_isempty(x_1)) -> isempty(encArg(x_1)) encArg(cons_last(x_1)) -> last(encArg(x_1)) encArg(cons_droplast(x_1)) -> droplast(encArg(x_1)) encArg(cons_a) -> a encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0 encode_false -> false encode_true -> true encode_double(x_1) -> double(encArg(x_1)) encode_log(x_1) -> log(encArg(x_1)) encode_logError -> logError encode_loop(x_1, x_2, x_3) -> loop(encArg(x_1), encArg(x_2), encArg(x_3)) encode_if(x_1, x_2, x_3, x_4) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_maplog(x_1) -> maplog(encArg(x_1)) encode_mapIter(x_1, x_2) -> mapIter(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_ifmap(x_1, x_2, x_3) -> ifmap(encArg(x_1), encArg(x_2), encArg(x_3)) encode_isempty(x_1) -> isempty(encArg(x_1)) encode_droplast(x_1) -> droplast(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_last(x_1) -> last(encArg(x_1)) encode_error -> error encode_a -> a encode_b -> b encode_c -> c Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) double(0) -> 0 double(s(x)) -> s(s(double(x))) log(0) -> logError log(s(x)) -> loop(s(x), s(0), 0) loop(x, s(y), z) -> if(le(x, s(y)), x, s(y), z) if(true, x, y, z) -> z if(false, x, y, z) -> loop(x, double(y), s(z)) maplog(xs) -> mapIter(xs, nil) mapIter(xs, ys) -> ifmap(isempty(xs), xs, ys) ifmap(true, xs, ys) -> ys ifmap(false, xs, ys) -> mapIter(droplast(xs), cons(log(last(xs)), ys)) isempty(nil) -> true isempty(cons(x, xs)) -> false last(nil) -> error last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) droplast(nil) -> nil droplast(cons(x, nil)) -> nil droplast(cons(x, cons(y, xs))) -> cons(x, droplast(cons(y, xs))) a -> b a -> c The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(false) -> false encArg(true) -> true encArg(logError) -> logError encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(error) -> error encArg(b) -> b encArg(c) -> c encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_log(x_1)) -> log(encArg(x_1)) encArg(cons_loop(x_1, x_2, x_3)) -> loop(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_if(x_1, x_2, x_3, x_4)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_maplog(x_1)) -> maplog(encArg(x_1)) encArg(cons_mapIter(x_1, x_2)) -> mapIter(encArg(x_1), encArg(x_2)) encArg(cons_ifmap(x_1, x_2, x_3)) -> ifmap(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_isempty(x_1)) -> isempty(encArg(x_1)) encArg(cons_last(x_1)) -> last(encArg(x_1)) encArg(cons_droplast(x_1)) -> droplast(encArg(x_1)) encArg(cons_a) -> a encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0 encode_false -> false encode_true -> true encode_double(x_1) -> double(encArg(x_1)) encode_log(x_1) -> log(encArg(x_1)) encode_logError -> logError encode_loop(x_1, x_2, x_3) -> loop(encArg(x_1), encArg(x_2), encArg(x_3)) encode_if(x_1, x_2, x_3, x_4) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_maplog(x_1) -> maplog(encArg(x_1)) encode_mapIter(x_1, x_2) -> mapIter(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_ifmap(x_1, x_2, x_3) -> ifmap(encArg(x_1), encArg(x_2), encArg(x_3)) encode_isempty(x_1) -> isempty(encArg(x_1)) encode_droplast(x_1) -> droplast(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_last(x_1) -> last(encArg(x_1)) encode_error -> error encode_a -> a encode_b -> b encode_c -> c Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) double(0) -> 0 double(s(x)) -> s(s(double(x))) log(0) -> logError log(s(x)) -> loop(s(x), s(0), 0) loop(x, s(y), z) -> if(le(x, s(y)), x, s(y), z) if(true, x, y, z) -> z if(false, x, y, z) -> loop(x, double(y), s(z)) maplog(xs) -> mapIter(xs, nil) mapIter(xs, ys) -> ifmap(isempty(xs), xs, ys) ifmap(true, xs, ys) -> ys ifmap(false, xs, ys) -> mapIter(droplast(xs), cons(log(last(xs)), ys)) isempty(nil) -> true isempty(cons(x, xs)) -> false last(nil) -> error last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) droplast(nil) -> nil droplast(cons(x, nil)) -> nil droplast(cons(x, cons(y, xs))) -> cons(x, droplast(cons(y, xs))) a -> b a -> c The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(false) -> false encArg(true) -> true encArg(logError) -> logError encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(error) -> error encArg(b) -> b encArg(c) -> c encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_log(x_1)) -> log(encArg(x_1)) encArg(cons_loop(x_1, x_2, x_3)) -> loop(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_if(x_1, x_2, x_3, x_4)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_maplog(x_1)) -> maplog(encArg(x_1)) encArg(cons_mapIter(x_1, x_2)) -> mapIter(encArg(x_1), encArg(x_2)) encArg(cons_ifmap(x_1, x_2, x_3)) -> ifmap(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_isempty(x_1)) -> isempty(encArg(x_1)) encArg(cons_last(x_1)) -> last(encArg(x_1)) encArg(cons_droplast(x_1)) -> droplast(encArg(x_1)) encArg(cons_a) -> a encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0 encode_false -> false encode_true -> true encode_double(x_1) -> double(encArg(x_1)) encode_log(x_1) -> log(encArg(x_1)) encode_logError -> logError encode_loop(x_1, x_2, x_3) -> loop(encArg(x_1), encArg(x_2), encArg(x_3)) encode_if(x_1, x_2, x_3, x_4) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_maplog(x_1) -> maplog(encArg(x_1)) encode_mapIter(x_1, x_2) -> mapIter(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_ifmap(x_1, x_2, x_3) -> ifmap(encArg(x_1), encArg(x_2), encArg(x_3)) encode_isempty(x_1) -> isempty(encArg(x_1)) encode_droplast(x_1) -> droplast(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_last(x_1) -> last(encArg(x_1)) encode_error -> error encode_a -> a encode_b -> b encode_c -> c Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence droplast(cons(x, cons(y, xs))) ->^+ cons(x, droplast(cons(y, xs))) gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. The pumping substitution is [xs / cons(y, xs)]. The result substitution is [x / y]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) double(0) -> 0 double(s(x)) -> s(s(double(x))) log(0) -> logError log(s(x)) -> loop(s(x), s(0), 0) loop(x, s(y), z) -> if(le(x, s(y)), x, s(y), z) if(true, x, y, z) -> z if(false, x, y, z) -> loop(x, double(y), s(z)) maplog(xs) -> mapIter(xs, nil) mapIter(xs, ys) -> ifmap(isempty(xs), xs, ys) ifmap(true, xs, ys) -> ys ifmap(false, xs, ys) -> mapIter(droplast(xs), cons(log(last(xs)), ys)) isempty(nil) -> true isempty(cons(x, xs)) -> false last(nil) -> error last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) droplast(nil) -> nil droplast(cons(x, nil)) -> nil droplast(cons(x, cons(y, xs))) -> cons(x, droplast(cons(y, xs))) a -> b a -> c The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(false) -> false encArg(true) -> true encArg(logError) -> logError encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(error) -> error encArg(b) -> b encArg(c) -> c encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_log(x_1)) -> log(encArg(x_1)) encArg(cons_loop(x_1, x_2, x_3)) -> loop(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_if(x_1, x_2, x_3, x_4)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_maplog(x_1)) -> maplog(encArg(x_1)) encArg(cons_mapIter(x_1, x_2)) -> mapIter(encArg(x_1), encArg(x_2)) encArg(cons_ifmap(x_1, x_2, x_3)) -> ifmap(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_isempty(x_1)) -> isempty(encArg(x_1)) encArg(cons_last(x_1)) -> last(encArg(x_1)) encArg(cons_droplast(x_1)) -> droplast(encArg(x_1)) encArg(cons_a) -> a encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0 encode_false -> false encode_true -> true encode_double(x_1) -> double(encArg(x_1)) encode_log(x_1) -> log(encArg(x_1)) encode_logError -> logError encode_loop(x_1, x_2, x_3) -> loop(encArg(x_1), encArg(x_2), encArg(x_3)) encode_if(x_1, x_2, x_3, x_4) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_maplog(x_1) -> maplog(encArg(x_1)) encode_mapIter(x_1, x_2) -> mapIter(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_ifmap(x_1, x_2, x_3) -> ifmap(encArg(x_1), encArg(x_2), encArg(x_3)) encode_isempty(x_1) -> isempty(encArg(x_1)) encode_droplast(x_1) -> droplast(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_last(x_1) -> last(encArg(x_1)) encode_error -> error encode_a -> a encode_b -> b encode_c -> c Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) double(0) -> 0 double(s(x)) -> s(s(double(x))) log(0) -> logError log(s(x)) -> loop(s(x), s(0), 0) loop(x, s(y), z) -> if(le(x, s(y)), x, s(y), z) if(true, x, y, z) -> z if(false, x, y, z) -> loop(x, double(y), s(z)) maplog(xs) -> mapIter(xs, nil) mapIter(xs, ys) -> ifmap(isempty(xs), xs, ys) ifmap(true, xs, ys) -> ys ifmap(false, xs, ys) -> mapIter(droplast(xs), cons(log(last(xs)), ys)) isempty(nil) -> true isempty(cons(x, xs)) -> false last(nil) -> error last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) droplast(nil) -> nil droplast(cons(x, nil)) -> nil droplast(cons(x, cons(y, xs))) -> cons(x, droplast(cons(y, xs))) a -> b a -> c The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(false) -> false encArg(true) -> true encArg(logError) -> logError encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(error) -> error encArg(b) -> b encArg(c) -> c encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_log(x_1)) -> log(encArg(x_1)) encArg(cons_loop(x_1, x_2, x_3)) -> loop(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_if(x_1, x_2, x_3, x_4)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_maplog(x_1)) -> maplog(encArg(x_1)) encArg(cons_mapIter(x_1, x_2)) -> mapIter(encArg(x_1), encArg(x_2)) encArg(cons_ifmap(x_1, x_2, x_3)) -> ifmap(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_isempty(x_1)) -> isempty(encArg(x_1)) encArg(cons_last(x_1)) -> last(encArg(x_1)) encArg(cons_droplast(x_1)) -> droplast(encArg(x_1)) encArg(cons_a) -> a encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0 encode_false -> false encode_true -> true encode_double(x_1) -> double(encArg(x_1)) encode_log(x_1) -> log(encArg(x_1)) encode_logError -> logError encode_loop(x_1, x_2, x_3) -> loop(encArg(x_1), encArg(x_2), encArg(x_3)) encode_if(x_1, x_2, x_3, x_4) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_maplog(x_1) -> maplog(encArg(x_1)) encode_mapIter(x_1, x_2) -> mapIter(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_ifmap(x_1, x_2, x_3) -> ifmap(encArg(x_1), encArg(x_2), encArg(x_3)) encode_isempty(x_1) -> isempty(encArg(x_1)) encode_droplast(x_1) -> droplast(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_last(x_1) -> last(encArg(x_1)) encode_error -> error encode_a -> a encode_b -> b encode_c -> c Rewrite Strategy: INNERMOST