/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 174 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (12) CdtProblem (13) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 57 ms] (16) CdtProblem (17) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (18) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a(a(y, 0), 0) -> y c(c(y)) -> y c(a(c(c(y)), x)) -> a(c(c(c(a(x, 0)))), y) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_c(x_1) -> c(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a(a(y, 0), 0) -> y c(c(y)) -> y c(a(c(c(y)), x)) -> a(c(c(c(a(x, 0)))), y) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a(a(y, 0), 0) -> y c(c(y)) -> y c(a(c(c(y)), x)) -> a(c(c(c(a(x, 0)))), y) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_a(z0, z1)) -> a(encArg(z0), encArg(z1)) encArg(cons_c(z0)) -> c(encArg(z0)) encode_a(z0, z1) -> a(encArg(z0), encArg(z1)) encode_0 -> 0 encode_c(z0) -> c(encArg(z0)) a(a(z0, 0), 0) -> z0 c(c(z0)) -> z0 c(a(c(c(z0)), z1)) -> a(c(c(c(a(z1, 0)))), z0) Tuples: ENCARG(0) -> c1 ENCARG(cons_a(z0, z1)) -> c2(A(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_c(z0)) -> c3(C(encArg(z0)), ENCARG(z0)) ENCODE_A(z0, z1) -> c4(A(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_0 -> c5 ENCODE_C(z0) -> c6(C(encArg(z0)), ENCARG(z0)) A(a(z0, 0), 0) -> c7 C(c(z0)) -> c8 C(a(c(c(z0)), z1)) -> c9(A(c(c(c(a(z1, 0)))), z0), C(c(c(a(z1, 0)))), C(c(a(z1, 0))), C(a(z1, 0)), A(z1, 0)) S tuples: A(a(z0, 0), 0) -> c7 C(c(z0)) -> c8 C(a(c(c(z0)), z1)) -> c9(A(c(c(c(a(z1, 0)))), z0), C(c(c(a(z1, 0)))), C(c(a(z1, 0))), C(a(z1, 0)), A(z1, 0)) K tuples:none Defined Rule Symbols: a_2, c_1, encArg_1, encode_a_2, encode_0, encode_c_1 Defined Pair Symbols: ENCARG_1, ENCODE_A_2, ENCODE_0, ENCODE_C_1, A_2, C_1 Compound Symbols: c1, c2_3, c3_2, c4_3, c5, c6_2, c7, c8, c9_5 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: C(a(c(c(z0)), z1)) -> c9(A(c(c(c(a(z1, 0)))), z0), C(c(c(a(z1, 0)))), C(c(a(z1, 0))), C(a(z1, 0)), A(z1, 0)) Removed 2 trailing nodes: ENCARG(0) -> c1 ENCODE_0 -> c5 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_a(z0, z1)) -> a(encArg(z0), encArg(z1)) encArg(cons_c(z0)) -> c(encArg(z0)) encode_a(z0, z1) -> a(encArg(z0), encArg(z1)) encode_0 -> 0 encode_c(z0) -> c(encArg(z0)) a(a(z0, 0), 0) -> z0 c(c(z0)) -> z0 c(a(c(c(z0)), z1)) -> a(c(c(c(a(z1, 0)))), z0) Tuples: ENCARG(cons_a(z0, z1)) -> c2(A(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_c(z0)) -> c3(C(encArg(z0)), ENCARG(z0)) ENCODE_A(z0, z1) -> c4(A(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_C(z0) -> c6(C(encArg(z0)), ENCARG(z0)) A(a(z0, 0), 0) -> c7 C(c(z0)) -> c8 S tuples: A(a(z0, 0), 0) -> c7 C(c(z0)) -> c8 K tuples:none Defined Rule Symbols: a_2, c_1, encArg_1, encode_a_2, encode_0, encode_c_1 Defined Pair Symbols: ENCARG_1, ENCODE_A_2, ENCODE_C_1, A_2, C_1 Compound Symbols: c2_3, c3_2, c4_3, c6_2, c7, c8 ---------------------------------------- (9) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_a(z0, z1)) -> a(encArg(z0), encArg(z1)) encArg(cons_c(z0)) -> c(encArg(z0)) encode_a(z0, z1) -> a(encArg(z0), encArg(z1)) encode_0 -> 0 encode_c(z0) -> c(encArg(z0)) a(a(z0, 0), 0) -> z0 c(c(z0)) -> z0 c(a(c(c(z0)), z1)) -> a(c(c(c(a(z1, 0)))), z0) Tuples: ENCARG(cons_a(z0, z1)) -> c2(A(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_c(z0)) -> c3(C(encArg(z0)), ENCARG(z0)) A(a(z0, 0), 0) -> c7 C(c(z0)) -> c8 ENCODE_A(z0, z1) -> c1(A(encArg(z0), encArg(z1))) ENCODE_A(z0, z1) -> c1(ENCARG(z0)) ENCODE_A(z0, z1) -> c1(ENCARG(z1)) ENCODE_C(z0) -> c1(C(encArg(z0))) ENCODE_C(z0) -> c1(ENCARG(z0)) S tuples: A(a(z0, 0), 0) -> c7 C(c(z0)) -> c8 K tuples:none Defined Rule Symbols: a_2, c_1, encArg_1, encode_a_2, encode_0, encode_c_1 Defined Pair Symbols: ENCARG_1, A_2, C_1, ENCODE_A_2, ENCODE_C_1 Compound Symbols: c2_3, c3_2, c7, c8, c1_1 ---------------------------------------- (11) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 3 leading nodes: ENCODE_A(z0, z1) -> c1(ENCARG(z0)) ENCODE_A(z0, z1) -> c1(ENCARG(z1)) ENCODE_C(z0) -> c1(ENCARG(z0)) ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_a(z0, z1)) -> a(encArg(z0), encArg(z1)) encArg(cons_c(z0)) -> c(encArg(z0)) encode_a(z0, z1) -> a(encArg(z0), encArg(z1)) encode_0 -> 0 encode_c(z0) -> c(encArg(z0)) a(a(z0, 0), 0) -> z0 c(c(z0)) -> z0 c(a(c(c(z0)), z1)) -> a(c(c(c(a(z1, 0)))), z0) Tuples: ENCARG(cons_a(z0, z1)) -> c2(A(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_c(z0)) -> c3(C(encArg(z0)), ENCARG(z0)) A(a(z0, 0), 0) -> c7 C(c(z0)) -> c8 ENCODE_A(z0, z1) -> c1(A(encArg(z0), encArg(z1))) ENCODE_C(z0) -> c1(C(encArg(z0))) S tuples: A(a(z0, 0), 0) -> c7 C(c(z0)) -> c8 K tuples:none Defined Rule Symbols: a_2, c_1, encArg_1, encode_a_2, encode_0, encode_c_1 Defined Pair Symbols: ENCARG_1, A_2, C_1, ENCODE_A_2, ENCODE_C_1 Compound Symbols: c2_3, c3_2, c7, c8, c1_1 ---------------------------------------- (13) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_a(z0, z1) -> a(encArg(z0), encArg(z1)) encode_0 -> 0 encode_c(z0) -> c(encArg(z0)) c(a(c(c(z0)), z1)) -> a(c(c(c(a(z1, 0)))), z0) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_a(z0, z1)) -> a(encArg(z0), encArg(z1)) encArg(cons_c(z0)) -> c(encArg(z0)) a(a(z0, 0), 0) -> z0 c(c(z0)) -> z0 Tuples: ENCARG(cons_a(z0, z1)) -> c2(A(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_c(z0)) -> c3(C(encArg(z0)), ENCARG(z0)) A(a(z0, 0), 0) -> c7 C(c(z0)) -> c8 ENCODE_A(z0, z1) -> c1(A(encArg(z0), encArg(z1))) ENCODE_C(z0) -> c1(C(encArg(z0))) S tuples: A(a(z0, 0), 0) -> c7 C(c(z0)) -> c8 K tuples:none Defined Rule Symbols: encArg_1, a_2, c_1 Defined Pair Symbols: ENCARG_1, A_2, C_1, ENCODE_A_2, ENCODE_C_1 Compound Symbols: c2_3, c3_2, c7, c8, c1_1 ---------------------------------------- (15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. A(a(z0, 0), 0) -> c7 C(c(z0)) -> c8 We considered the (Usable) Rules:none And the Tuples: ENCARG(cons_a(z0, z1)) -> c2(A(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_c(z0)) -> c3(C(encArg(z0)), ENCARG(z0)) A(a(z0, 0), 0) -> c7 C(c(z0)) -> c8 ENCODE_A(z0, z1) -> c1(A(encArg(z0), encArg(z1))) ENCODE_C(z0) -> c1(C(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = [1] POL(A(x_1, x_2)) = [1] POL(C(x_1)) = [1] POL(ENCARG(x_1)) = x_1 POL(ENCODE_A(x_1, x_2)) = [1] POL(ENCODE_C(x_1)) = [1] POL(a(x_1, x_2)) = [1] + x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c2(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c7) = 0 POL(c8) = 0 POL(cons_a(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_c(x_1)) = [1] + x_1 POL(encArg(x_1)) = [1] + x_1 ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_a(z0, z1)) -> a(encArg(z0), encArg(z1)) encArg(cons_c(z0)) -> c(encArg(z0)) a(a(z0, 0), 0) -> z0 c(c(z0)) -> z0 Tuples: ENCARG(cons_a(z0, z1)) -> c2(A(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_c(z0)) -> c3(C(encArg(z0)), ENCARG(z0)) A(a(z0, 0), 0) -> c7 C(c(z0)) -> c8 ENCODE_A(z0, z1) -> c1(A(encArg(z0), encArg(z1))) ENCODE_C(z0) -> c1(C(encArg(z0))) S tuples:none K tuples: A(a(z0, 0), 0) -> c7 C(c(z0)) -> c8 Defined Rule Symbols: encArg_1, a_2, c_1 Defined Pair Symbols: ENCARG_1, A_2, C_1, ENCODE_A_2, ENCODE_C_1 Compound Symbols: c2_3, c3_2, c7, c8, c1_1 ---------------------------------------- (17) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (18) BOUNDS(1, 1)