/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 215 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (12) CdtProblem (13) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 46 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 24 ms] (18) CdtProblem (19) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (20) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(c(a, z, x)) -> b(a, z) b(x, b(z, y)) -> f(b(f(f(z)), c(x, z, y))) b(y, z) -> z S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(c(x_1, x_2, x_3)) -> c(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(a) -> a encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_b(x_1, x_2)) -> b(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_c(x_1, x_2, x_3) -> c(encArg(x_1), encArg(x_2), encArg(x_3)) encode_a -> a encode_b(x_1, x_2) -> b(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(c(a, z, x)) -> b(a, z) b(x, b(z, y)) -> f(b(f(f(z)), c(x, z, y))) b(y, z) -> z The (relative) TRS S consists of the following rules: encArg(c(x_1, x_2, x_3)) -> c(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(a) -> a encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_b(x_1, x_2)) -> b(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_c(x_1, x_2, x_3) -> c(encArg(x_1), encArg(x_2), encArg(x_3)) encode_a -> a encode_b(x_1, x_2) -> b(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(c(a, z, x)) -> b(a, z) b(x, b(z, y)) -> f(b(f(f(z)), c(x, z, y))) b(y, z) -> z The (relative) TRS S consists of the following rules: encArg(c(x_1, x_2, x_3)) -> c(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(a) -> a encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_b(x_1, x_2)) -> b(encArg(x_1), encArg(x_2)) encode_f(x_1) -> f(encArg(x_1)) encode_c(x_1, x_2, x_3) -> c(encArg(x_1), encArg(x_2), encArg(x_3)) encode_a -> a encode_b(x_1, x_2) -> b(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0, z1, z2)) -> c(encArg(z0), encArg(z1), encArg(z2)) encArg(a) -> a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_b(z0, z1)) -> b(encArg(z0), encArg(z1)) encode_f(z0) -> f(encArg(z0)) encode_c(z0, z1, z2) -> c(encArg(z0), encArg(z1), encArg(z2)) encode_a -> a encode_b(z0, z1) -> b(encArg(z0), encArg(z1)) f(c(a, z0, z1)) -> b(a, z0) b(z0, b(z1, z2)) -> f(b(f(f(z1)), c(z0, z1, z2))) b(z0, z1) -> z1 Tuples: ENCARG(c(z0, z1, z2)) -> c1(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(a) -> c2 ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0, z1)) -> c4(B(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_F(z0) -> c5(F(encArg(z0)), ENCARG(z0)) ENCODE_C(z0, z1, z2) -> c6(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCODE_A -> c7 ENCODE_B(z0, z1) -> c8(B(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(c(a, z0, z1)) -> c9(B(a, z0)) B(z0, b(z1, z2)) -> c10(F(b(f(f(z1)), c(z0, z1, z2))), B(f(f(z1)), c(z0, z1, z2)), F(f(z1)), F(z1)) B(z0, z1) -> c11 S tuples: F(c(a, z0, z1)) -> c9(B(a, z0)) B(z0, b(z1, z2)) -> c10(F(b(f(f(z1)), c(z0, z1, z2))), B(f(f(z1)), c(z0, z1, z2)), F(f(z1)), F(z1)) B(z0, z1) -> c11 K tuples:none Defined Rule Symbols: f_1, b_2, encArg_1, encode_f_1, encode_c_3, encode_a, encode_b_2 Defined Pair Symbols: ENCARG_1, ENCODE_F_1, ENCODE_C_3, ENCODE_A, ENCODE_B_2, F_1, B_2 Compound Symbols: c1_3, c2, c3_2, c4_3, c5_2, c6_3, c7, c8_3, c9_1, c10_4, c11 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_C(z0, z1, z2) -> c6(ENCARG(z0), ENCARG(z1), ENCARG(z2)) B(z0, b(z1, z2)) -> c10(F(b(f(f(z1)), c(z0, z1, z2))), B(f(f(z1)), c(z0, z1, z2)), F(f(z1)), F(z1)) Removed 2 trailing nodes: ENCODE_A -> c7 ENCARG(a) -> c2 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0, z1, z2)) -> c(encArg(z0), encArg(z1), encArg(z2)) encArg(a) -> a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_b(z0, z1)) -> b(encArg(z0), encArg(z1)) encode_f(z0) -> f(encArg(z0)) encode_c(z0, z1, z2) -> c(encArg(z0), encArg(z1), encArg(z2)) encode_a -> a encode_b(z0, z1) -> b(encArg(z0), encArg(z1)) f(c(a, z0, z1)) -> b(a, z0) b(z0, b(z1, z2)) -> f(b(f(f(z1)), c(z0, z1, z2))) b(z0, z1) -> z1 Tuples: ENCARG(c(z0, z1, z2)) -> c1(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0, z1)) -> c4(B(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_F(z0) -> c5(F(encArg(z0)), ENCARG(z0)) ENCODE_B(z0, z1) -> c8(B(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(c(a, z0, z1)) -> c9(B(a, z0)) B(z0, z1) -> c11 S tuples: F(c(a, z0, z1)) -> c9(B(a, z0)) B(z0, z1) -> c11 K tuples:none Defined Rule Symbols: f_1, b_2, encArg_1, encode_f_1, encode_c_3, encode_a, encode_b_2 Defined Pair Symbols: ENCARG_1, ENCODE_F_1, ENCODE_B_2, F_1, B_2 Compound Symbols: c1_3, c3_2, c4_3, c5_2, c8_3, c9_1, c11 ---------------------------------------- (9) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0, z1, z2)) -> c(encArg(z0), encArg(z1), encArg(z2)) encArg(a) -> a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_b(z0, z1)) -> b(encArg(z0), encArg(z1)) encode_f(z0) -> f(encArg(z0)) encode_c(z0, z1, z2) -> c(encArg(z0), encArg(z1), encArg(z2)) encode_a -> a encode_b(z0, z1) -> b(encArg(z0), encArg(z1)) f(c(a, z0, z1)) -> b(a, z0) b(z0, b(z1, z2)) -> f(b(f(f(z1)), c(z0, z1, z2))) b(z0, z1) -> z1 Tuples: ENCARG(c(z0, z1, z2)) -> c1(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0, z1)) -> c4(B(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(c(a, z0, z1)) -> c9(B(a, z0)) B(z0, z1) -> c11 ENCODE_F(z0) -> c2(F(encArg(z0))) ENCODE_F(z0) -> c2(ENCARG(z0)) ENCODE_B(z0, z1) -> c2(B(encArg(z0), encArg(z1))) ENCODE_B(z0, z1) -> c2(ENCARG(z0)) ENCODE_B(z0, z1) -> c2(ENCARG(z1)) S tuples: F(c(a, z0, z1)) -> c9(B(a, z0)) B(z0, z1) -> c11 K tuples:none Defined Rule Symbols: f_1, b_2, encArg_1, encode_f_1, encode_c_3, encode_a, encode_b_2 Defined Pair Symbols: ENCARG_1, F_1, B_2, ENCODE_F_1, ENCODE_B_2 Compound Symbols: c1_3, c3_2, c4_3, c9_1, c11, c2_1 ---------------------------------------- (11) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 3 leading nodes: ENCODE_F(z0) -> c2(ENCARG(z0)) ENCODE_B(z0, z1) -> c2(ENCARG(z0)) ENCODE_B(z0, z1) -> c2(ENCARG(z1)) ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0, z1, z2)) -> c(encArg(z0), encArg(z1), encArg(z2)) encArg(a) -> a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_b(z0, z1)) -> b(encArg(z0), encArg(z1)) encode_f(z0) -> f(encArg(z0)) encode_c(z0, z1, z2) -> c(encArg(z0), encArg(z1), encArg(z2)) encode_a -> a encode_b(z0, z1) -> b(encArg(z0), encArg(z1)) f(c(a, z0, z1)) -> b(a, z0) b(z0, b(z1, z2)) -> f(b(f(f(z1)), c(z0, z1, z2))) b(z0, z1) -> z1 Tuples: ENCARG(c(z0, z1, z2)) -> c1(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0, z1)) -> c4(B(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(c(a, z0, z1)) -> c9(B(a, z0)) B(z0, z1) -> c11 ENCODE_F(z0) -> c2(F(encArg(z0))) ENCODE_B(z0, z1) -> c2(B(encArg(z0), encArg(z1))) S tuples: F(c(a, z0, z1)) -> c9(B(a, z0)) B(z0, z1) -> c11 K tuples:none Defined Rule Symbols: f_1, b_2, encArg_1, encode_f_1, encode_c_3, encode_a, encode_b_2 Defined Pair Symbols: ENCARG_1, F_1, B_2, ENCODE_F_1, ENCODE_B_2 Compound Symbols: c1_3, c3_2, c4_3, c9_1, c11, c2_1 ---------------------------------------- (13) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_f(z0) -> f(encArg(z0)) encode_c(z0, z1, z2) -> c(encArg(z0), encArg(z1), encArg(z2)) encode_a -> a encode_b(z0, z1) -> b(encArg(z0), encArg(z1)) b(z0, b(z1, z2)) -> f(b(f(f(z1)), c(z0, z1, z2))) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0, z1, z2)) -> c(encArg(z0), encArg(z1), encArg(z2)) encArg(a) -> a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_b(z0, z1)) -> b(encArg(z0), encArg(z1)) f(c(a, z0, z1)) -> b(a, z0) b(z0, z1) -> z1 Tuples: ENCARG(c(z0, z1, z2)) -> c1(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0, z1)) -> c4(B(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(c(a, z0, z1)) -> c9(B(a, z0)) B(z0, z1) -> c11 ENCODE_F(z0) -> c2(F(encArg(z0))) ENCODE_B(z0, z1) -> c2(B(encArg(z0), encArg(z1))) S tuples: F(c(a, z0, z1)) -> c9(B(a, z0)) B(z0, z1) -> c11 K tuples:none Defined Rule Symbols: encArg_1, f_1, b_2 Defined Pair Symbols: ENCARG_1, F_1, B_2, ENCODE_F_1, ENCODE_B_2 Compound Symbols: c1_3, c3_2, c4_3, c9_1, c11, c2_1 ---------------------------------------- (15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. B(z0, z1) -> c11 We considered the (Usable) Rules:none And the Tuples: ENCARG(c(z0, z1, z2)) -> c1(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0, z1)) -> c4(B(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(c(a, z0, z1)) -> c9(B(a, z0)) B(z0, z1) -> c11 ENCODE_F(z0) -> c2(F(encArg(z0))) ENCODE_B(z0, z1) -> c2(B(encArg(z0), encArg(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(B(x_1, x_2)) = [1] POL(ENCARG(x_1)) = x_1 POL(ENCODE_B(x_1, x_2)) = [1] + x_2 POL(ENCODE_F(x_1)) = [1] + x_1 POL(F(x_1)) = [1] POL(a) = [1] POL(b(x_1, x_2)) = [1] + x_1 + x_2 POL(c(x_1, x_2, x_3)) = [1] + x_1 + x_2 + x_3 POL(c1(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c11) = 0 POL(c2(x_1)) = x_1 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c9(x_1)) = x_1 POL(cons_b(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_f(x_1)) = [1] + x_1 POL(encArg(x_1)) = x_1 POL(f(x_1)) = [1] + x_1 ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0, z1, z2)) -> c(encArg(z0), encArg(z1), encArg(z2)) encArg(a) -> a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_b(z0, z1)) -> b(encArg(z0), encArg(z1)) f(c(a, z0, z1)) -> b(a, z0) b(z0, z1) -> z1 Tuples: ENCARG(c(z0, z1, z2)) -> c1(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0, z1)) -> c4(B(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(c(a, z0, z1)) -> c9(B(a, z0)) B(z0, z1) -> c11 ENCODE_F(z0) -> c2(F(encArg(z0))) ENCODE_B(z0, z1) -> c2(B(encArg(z0), encArg(z1))) S tuples: F(c(a, z0, z1)) -> c9(B(a, z0)) K tuples: B(z0, z1) -> c11 Defined Rule Symbols: encArg_1, f_1, b_2 Defined Pair Symbols: ENCARG_1, F_1, B_2, ENCODE_F_1, ENCODE_B_2 Compound Symbols: c1_3, c3_2, c4_3, c9_1, c11, c2_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(c(a, z0, z1)) -> c9(B(a, z0)) We considered the (Usable) Rules:none And the Tuples: ENCARG(c(z0, z1, z2)) -> c1(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0, z1)) -> c4(B(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(c(a, z0, z1)) -> c9(B(a, z0)) B(z0, z1) -> c11 ENCODE_F(z0) -> c2(F(encArg(z0))) ENCODE_B(z0, z1) -> c2(B(encArg(z0), encArg(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(B(x_1, x_2)) = 0 POL(ENCARG(x_1)) = x_1 POL(ENCODE_B(x_1, x_2)) = 0 POL(ENCODE_F(x_1)) = [1] + x_1 POL(F(x_1)) = [1] POL(a) = [1] POL(b(x_1, x_2)) = [1] + x_1 + x_2 POL(c(x_1, x_2, x_3)) = [1] + x_1 + x_2 + x_3 POL(c1(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c11) = 0 POL(c2(x_1)) = x_1 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c9(x_1)) = x_1 POL(cons_b(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_f(x_1)) = [1] + x_1 POL(encArg(x_1)) = x_1 POL(f(x_1)) = [1] + x_1 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0, z1, z2)) -> c(encArg(z0), encArg(z1), encArg(z2)) encArg(a) -> a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_b(z0, z1)) -> b(encArg(z0), encArg(z1)) f(c(a, z0, z1)) -> b(a, z0) b(z0, z1) -> z1 Tuples: ENCARG(c(z0, z1, z2)) -> c1(ENCARG(z0), ENCARG(z1), ENCARG(z2)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0, z1)) -> c4(B(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) F(c(a, z0, z1)) -> c9(B(a, z0)) B(z0, z1) -> c11 ENCODE_F(z0) -> c2(F(encArg(z0))) ENCODE_B(z0, z1) -> c2(B(encArg(z0), encArg(z1))) S tuples:none K tuples: B(z0, z1) -> c11 F(c(a, z0, z1)) -> c9(B(a, z0)) Defined Rule Symbols: encArg_1, f_1, b_2 Defined Pair Symbols: ENCARG_1, F_1, B_2, ENCODE_F_1, ENCODE_B_2 Compound Symbols: c1_3, c3_2, c4_3, c9_1, c11, c2_1 ---------------------------------------- (19) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (20) BOUNDS(1, 1)