/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^4)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^4). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 280 ms] (4) CpxRelTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 390 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 5 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 451 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 149 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 78 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 11 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 817 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 438 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 482 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 44 ms] (42) CpxRNTS (43) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 201 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 156 ms] (48) CpxRNTS (49) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 209 ms] (52) CpxRNTS (53) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (54) CpxRNTS (55) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (56) CpxRNTS (57) IntTrsBoundProof [UPPER BOUND(ID), 117 ms] (58) CpxRNTS (59) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (60) CpxRNTS (61) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (62) CpxRNTS (63) IntTrsBoundProof [UPPER BOUND(ID), 239 ms] (64) CpxRNTS (65) IntTrsBoundProof [UPPER BOUND(ID), 14 ms] (66) CpxRNTS (67) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (68) CpxRNTS (69) IntTrsBoundProof [UPPER BOUND(ID), 157 ms] (70) CpxRNTS (71) IntTrsBoundProof [UPPER BOUND(ID), 2 ms] (72) CpxRNTS (73) FinalProof [FINISHED, 0 ms] (74) BOUNDS(1, n^4) (75) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (76) TRS for Loop Detection (77) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (78) BEST (79) proven lower bound (80) LowerBoundPropagationProof [FINISHED, 0 ms] (81) BOUNDS(n^1, INF) (82) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^4). The TRS R consists of the following rules: minus(x, x) -> 0 minus(s(x), s(y)) -> minus(x, y) minus(0, x) -> 0 minus(x, 0) -> x div(s(x), s(y)) -> s(div(minus(x, y), s(y))) div(0, s(y)) -> 0 f(x, 0, b) -> x f(x, s(y), b) -> div(f(x, minus(s(y), s(0)), b), b) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^4). The TRS R consists of the following rules: minus(x, x) -> 0 minus(s(x), s(y)) -> minus(x, y) minus(0, x) -> 0 minus(x, 0) -> x div(s(x), s(y)) -> s(div(minus(x, y), s(y))) div(0, s(y)) -> 0 f(x, 0, b) -> x f(x, s(y), b) -> div(f(x, minus(s(y), s(0)), b), b) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^4). The TRS R consists of the following rules: minus(x, x) -> 0 minus(s(x), s(y)) -> minus(x, y) minus(0, x) -> 0 minus(x, 0) -> x div(s(x), s(y)) -> s(div(minus(x, y), s(y))) div(0, s(y)) -> 0 f(x, 0, b) -> x f(x, s(y), b) -> div(f(x, minus(s(y), s(0)), b), b) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^4). The TRS R consists of the following rules: minus(x, x) -> 0 [1] minus(s(x), s(y)) -> minus(x, y) [1] minus(0, x) -> 0 [1] minus(x, 0) -> x [1] div(s(x), s(y)) -> s(div(minus(x, y), s(y))) [1] div(0, s(y)) -> 0 [1] f(x, 0, b) -> x [1] f(x, s(y), b) -> div(f(x, minus(s(y), s(0)), b), b) [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) [0] encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: minus(x, x) -> 0 [1] minus(s(x), s(y)) -> minus(x, y) [1] minus(0, x) -> 0 [1] minus(x, 0) -> x [1] div(s(x), s(y)) -> s(div(minus(x, y), s(y))) [1] div(0, s(y)) -> 0 [1] f(x, 0, b) -> x [1] f(x, s(y), b) -> div(f(x, minus(s(y), s(0)), b), b) [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) [0] encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] The TRS has the following type information: minus :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f 0 :: 0:s:cons_minus:cons_div:cons_f s :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f div :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f f :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f encArg :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f cons_minus :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f cons_div :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f cons_f :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f encode_minus :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f encode_0 :: 0:s:cons_minus:cons_div:cons_f encode_s :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f encode_div :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f encode_f :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: minus_2 f_3 div_2 encArg_1 encode_minus_2 encode_0 encode_s_1 encode_div_2 encode_f_3 Due to the following rules being added: encArg(v0) -> 0 [0] encode_minus(v0, v1) -> 0 [0] encode_0 -> 0 [0] encode_s(v0) -> 0 [0] encode_div(v0, v1) -> 0 [0] encode_f(v0, v1, v2) -> 0 [0] minus(v0, v1) -> 0 [0] f(v0, v1, v2) -> 0 [0] div(v0, v1) -> 0 [0] And the following fresh constants: none ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: minus(x, x) -> 0 [1] minus(s(x), s(y)) -> minus(x, y) [1] minus(0, x) -> 0 [1] minus(x, 0) -> x [1] div(s(x), s(y)) -> s(div(minus(x, y), s(y))) [1] div(0, s(y)) -> 0 [1] f(x, 0, b) -> x [1] f(x, s(y), b) -> div(f(x, minus(s(y), s(0)), b), b) [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) [0] encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(v0) -> 0 [0] encode_minus(v0, v1) -> 0 [0] encode_0 -> 0 [0] encode_s(v0) -> 0 [0] encode_div(v0, v1) -> 0 [0] encode_f(v0, v1, v2) -> 0 [0] minus(v0, v1) -> 0 [0] f(v0, v1, v2) -> 0 [0] div(v0, v1) -> 0 [0] The TRS has the following type information: minus :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f 0 :: 0:s:cons_minus:cons_div:cons_f s :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f div :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f f :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f encArg :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f cons_minus :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f cons_div :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f cons_f :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f encode_minus :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f encode_0 :: 0:s:cons_minus:cons_div:cons_f encode_s :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f encode_div :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f encode_f :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: minus(x, x) -> 0 [1] minus(s(x), s(y)) -> minus(x, y) [1] minus(0, x) -> 0 [1] minus(x, 0) -> x [1] div(s(x), s(x)) -> s(div(0, s(x))) [2] div(s(s(x')), s(s(y'))) -> s(div(minus(x', y'), s(s(y')))) [2] div(s(0), s(y)) -> s(div(0, s(y))) [2] div(s(x), s(0)) -> s(div(x, s(0))) [2] div(s(x), s(y)) -> s(div(0, s(y))) [1] div(0, s(y)) -> 0 [1] f(x, 0, b) -> x [1] f(x, s(0), b) -> div(f(x, 0, b), b) [2] f(x, s(y), b) -> div(f(x, minus(y, 0), b), b) [2] f(x, s(y), b) -> div(f(x, 0, b), b) [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) [0] encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) [0] encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) [0] encArg(v0) -> 0 [0] encode_minus(v0, v1) -> 0 [0] encode_0 -> 0 [0] encode_s(v0) -> 0 [0] encode_div(v0, v1) -> 0 [0] encode_f(v0, v1, v2) -> 0 [0] minus(v0, v1) -> 0 [0] f(v0, v1, v2) -> 0 [0] div(v0, v1) -> 0 [0] The TRS has the following type information: minus :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f 0 :: 0:s:cons_minus:cons_div:cons_f s :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f div :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f f :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f encArg :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f cons_minus :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f cons_div :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f cons_f :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f encode_minus :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f encode_0 :: 0:s:cons_minus:cons_div:cons_f encode_s :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f encode_div :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f encode_f :: 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f -> 0:s:cons_minus:cons_div:cons_f Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' = 1 + y, y >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 div(z, z') -{ 2 }-> 1 + div(x, 1 + 0) :|: x >= 0, z' = 1 + 0, z = 1 + x div(z, z') -{ 2 }-> 1 + div(minus(x', y'), 1 + (1 + y')) :|: z' = 1 + (1 + y'), x' >= 0, y' >= 0, z = 1 + (1 + x') div(z, z') -{ 2 }-> 1 + div(0, 1 + x) :|: z' = 1 + x, x >= 0, z = 1 + x div(z, z') -{ 2 }-> 1 + div(0, 1 + y) :|: z' = 1 + y, z = 1 + 0, y >= 0 div(z, z') -{ 1 }-> 1 + div(0, 1 + y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_div(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_f(z, z', z'') -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, x_3 >= 0, x_2 >= 0, z = x_1, z' = x_2, z'' = x_3 encode_f(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_minus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_s(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_s(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 f(z, z', z'') -{ 1 }-> x :|: b >= 0, z'' = b, x >= 0, z = x, z' = 0 f(z, z', z'') -{ 2 }-> div(f(x, minus(y, 0), b), b) :|: z' = 1 + y, b >= 0, z'' = b, x >= 0, y >= 0, z = x f(z, z', z'') -{ 2 }-> div(f(x, 0, b), b) :|: b >= 0, z'' = b, x >= 0, z' = 1 + 0, z = x f(z, z', z'') -{ 1 }-> div(f(x, 0, b), b) :|: z' = 1 + y, b >= 0, z'' = b, x >= 0, y >= 0, z = x f(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 minus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 minus(z, z') -{ 1 }-> minus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x minus(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = x minus(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 2 }-> 1 + div(minus(z - 2, z' - 2), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 div(z, z') -{ 1 }-> 1 + div(0, 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 0 }-> div(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 2 }-> div(f(z, minus(z' - 1, 0), z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 1 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { minus } { encode_0 } { div } { f } { encArg } { encode_div } { encode_minus } { encode_f } { encode_s } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 2 }-> 1 + div(minus(z - 2, z' - 2), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 div(z, z') -{ 1 }-> 1 + div(0, 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 0 }-> div(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 2 }-> div(f(z, minus(z' - 1, 0), z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 1 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {minus}, {encode_0}, {div}, {f}, {encArg}, {encode_div}, {encode_minus}, {encode_f}, {encode_s} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 2 }-> 1 + div(minus(z - 2, z' - 2), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 div(z, z') -{ 1 }-> 1 + div(0, 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 0 }-> div(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 2 }-> div(f(z, minus(z' - 1, 0), z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 1 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {minus}, {encode_0}, {div}, {f}, {encArg}, {encode_div}, {encode_minus}, {encode_f}, {encode_s} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 2 }-> 1 + div(minus(z - 2, z' - 2), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 div(z, z') -{ 1 }-> 1 + div(0, 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 0 }-> div(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 2 }-> div(f(z, minus(z' - 1, 0), z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 1 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {minus}, {encode_0}, {div}, {f}, {encArg}, {encode_div}, {encode_minus}, {encode_f}, {encode_s} Previous analysis results are: minus: runtime: ?, size: O(n^1) [z] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + z ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 2 }-> 1 + div(minus(z - 2, z' - 2), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 div(z, z') -{ 1 }-> 1 + div(0, 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 0 }-> div(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 2 }-> div(f(z, minus(z' - 1, 0), z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 1 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_0}, {div}, {f}, {encArg}, {encode_div}, {encode_minus}, {encode_f}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [3 + z], size: O(n^1) [z] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 + z }-> 1 + div(s', 1 + (1 + (z' - 2))) :|: s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 div(z, z') -{ 1 }-> 1 + div(0, 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 0 }-> div(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 4 + z' }-> div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 1 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 3 + z }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_0}, {div}, {f}, {encArg}, {encode_div}, {encode_minus}, {encode_f}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [3 + z], size: O(n^1) [z] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 + z }-> 1 + div(s', 1 + (1 + (z' - 2))) :|: s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 div(z, z') -{ 1 }-> 1 + div(0, 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 0 }-> div(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 4 + z' }-> div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 1 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 3 + z }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_0}, {div}, {f}, {encArg}, {encode_div}, {encode_minus}, {encode_f}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [3 + z], size: O(n^1) [z] encode_0: runtime: ?, size: O(1) [0] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 + z }-> 1 + div(s', 1 + (1 + (z' - 2))) :|: s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 div(z, z') -{ 1 }-> 1 + div(0, 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 0 }-> div(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 4 + z' }-> div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 1 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 3 + z }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {div}, {f}, {encArg}, {encode_div}, {encode_minus}, {encode_f}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [3 + z], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 + z }-> 1 + div(s', 1 + (1 + (z' - 2))) :|: s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 div(z, z') -{ 1 }-> 1 + div(0, 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 0 }-> div(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 4 + z' }-> div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 1 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 3 + z }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {div}, {f}, {encArg}, {encode_div}, {encode_minus}, {encode_f}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [3 + z], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: div after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 + z }-> 1 + div(s', 1 + (1 + (z' - 2))) :|: s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 div(z, z') -{ 1 }-> 1 + div(0, 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 0 }-> div(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 4 + z' }-> div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 1 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 3 + z }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {div}, {f}, {encArg}, {encode_div}, {encode_minus}, {encode_f}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [3 + z], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: ?, size: O(n^1) [z] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: div after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + 10*z + z^2 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 + z }-> 1 + div(s', 1 + (1 + (z' - 2))) :|: s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 div(z, z') -{ 1 }-> 1 + div(0, 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 0 }-> div(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 4 + z' }-> div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 1 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 3 + z }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_div}, {encode_minus}, {encode_f}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [3 + z], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^2) [1 + 10*z + z^2], size: O(n^1) [z] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 4 + 10*s' + s'^2 + z }-> 1 + s2 :|: s2 >= 0, s2 <= s', s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 3 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0, z' - 1 >= 0 div(z, z') -{ -6 + 8*z + z^2 }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1, z - 1 >= 0, z' = 1 + 0 div(z, z') -{ 2 }-> 1 + s5 :|: s5 >= 0, s5 <= 0, z - 1 >= 0, z' - 1 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 0 }-> div(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 4 + z' }-> div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 1 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 3 + z }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_div}, {encode_minus}, {encode_f}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [3 + z], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^2) [1 + 10*z + z^2], size: O(n^1) [z] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 4 + 10*s' + s'^2 + z }-> 1 + s2 :|: s2 >= 0, s2 <= s', s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 3 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0, z' - 1 >= 0 div(z, z') -{ -6 + 8*z + z^2 }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1, z - 1 >= 0, z' = 1 + 0 div(z, z') -{ 2 }-> 1 + s5 :|: s5 >= 0, s5 <= 0, z - 1 >= 0, z' - 1 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 0 }-> div(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 4 + z' }-> div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 1 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 3 + z }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_div}, {encode_minus}, {encode_f}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [3 + z], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^2) [1 + 10*z + z^2], size: O(n^1) [z] f: runtime: ?, size: O(n^1) [z] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 1 + 30*z*z' + 3*z^2*z' + 10*z' + z'^2 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 4 + 10*s' + s'^2 + z }-> 1 + s2 :|: s2 >= 0, s2 <= s', s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 3 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0, z' - 1 >= 0 div(z, z') -{ -6 + 8*z + z^2 }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1, z - 1 >= 0, z' = 1 + 0 div(z, z') -{ 2 }-> 1 + s5 :|: s5 >= 0, s5 <= 0, z - 1 >= 0, z' - 1 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 0 }-> div(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 4 + z' }-> div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 1 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 3 + z }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_div}, {encode_minus}, {encode_f}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [3 + z], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^2) [1 + 10*z + z^2], size: O(n^1) [z] f: runtime: O(n^3) [1 + 30*z*z' + 3*z^2*z' + 10*z' + z'^2], size: O(n^1) [z] ---------------------------------------- (43) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 4 + 10*s' + s'^2 + z }-> 1 + s2 :|: s2 >= 0, s2 <= s', s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 3 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0, z' - 1 >= 0 div(z, z') -{ -6 + 8*z + z^2 }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1, z - 1 >= 0, z' = 1 + 0 div(z, z') -{ 2 }-> 1 + s5 :|: s5 >= 0, s5 <= 0, z - 1 >= 0, z' - 1 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 0 }-> div(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 3 + 10*s10 + s10^2 }-> s11 :|: s10 >= 0, s10 <= z, s11 >= 0, s11 <= s10, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 4 + 10*s6 + s6^2 }-> s7 :|: s6 >= 0, s6 <= z, s7 >= 0, s7 <= s6, z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 6 + 10*s'' + 30*s''*z + 3*s''*z^2 + s''^2 + 10*s8 + s8^2 + z' }-> s9 :|: s8 >= 0, s8 <= z, s9 >= 0, s9 <= s8, s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 3 + z }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_div}, {encode_minus}, {encode_f}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [3 + z], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^2) [1 + 10*z + z^2], size: O(n^1) [z] f: runtime: O(n^3) [1 + 30*z*z' + 3*z^2*z' + 10*z' + z'^2], size: O(n^1) [z] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 4 + 10*s' + s'^2 + z }-> 1 + s2 :|: s2 >= 0, s2 <= s', s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 3 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0, z' - 1 >= 0 div(z, z') -{ -6 + 8*z + z^2 }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1, z - 1 >= 0, z' = 1 + 0 div(z, z') -{ 2 }-> 1 + s5 :|: s5 >= 0, s5 <= 0, z - 1 >= 0, z' - 1 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 0 }-> div(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 3 + 10*s10 + s10^2 }-> s11 :|: s10 >= 0, s10 <= z, s11 >= 0, s11 <= s10, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 4 + 10*s6 + s6^2 }-> s7 :|: s6 >= 0, s6 <= z, s7 >= 0, s7 <= s6, z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 6 + 10*s'' + 30*s''*z + 3*s''*z^2 + s''^2 + 10*s8 + s8^2 + z' }-> s9 :|: s8 >= 0, s8 <= z, s9 >= 0, s9 <= s8, s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 3 + z }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_div}, {encode_minus}, {encode_f}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [3 + z], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^2) [1 + 10*z + z^2], size: O(n^1) [z] f: runtime: O(n^3) [1 + 30*z*z' + 3*z^2*z' + 10*z' + z'^2], size: O(n^1) [z] encArg: runtime: ?, size: O(n^1) [z] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^4) with polynomial bound: 5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 4 + 10*s' + s'^2 + z }-> 1 + s2 :|: s2 >= 0, s2 <= s', s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 3 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0, z' - 1 >= 0 div(z, z') -{ -6 + 8*z + z^2 }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1, z - 1 >= 0, z' = 1 + 0 div(z, z') -{ 2 }-> 1 + s5 :|: s5 >= 0, s5 <= 0, z - 1 >= 0, z' - 1 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2), encArg(x_3)) :|: x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> div(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 0 }-> div(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> f(encArg(z), encArg(z'), encArg(z'')) :|: z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z', z'') -{ 3 + 10*s10 + s10^2 }-> s11 :|: s10 >= 0, s10 <= z, s11 >= 0, s11 <= s10, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 4 + 10*s6 + s6^2 }-> s7 :|: s6 >= 0, s6 <= z, s7 >= 0, s7 <= s6, z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 6 + 10*s'' + 30*s''*z + 3*s''*z^2 + s''^2 + 10*s8 + s8^2 + z' }-> s9 :|: s8 >= 0, s8 <= z, s9 >= 0, s9 <= s8, s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 3 + z }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_div}, {encode_minus}, {encode_f}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [3 + z], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^2) [1 + 10*z + z^2], size: O(n^1) [z] f: runtime: O(n^3) [1 + 30*z*z' + 3*z^2*z' + 10*z' + z'^2], size: O(n^1) [z] encArg: runtime: O(n^4) [5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4], size: O(n^1) [z] ---------------------------------------- (49) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 4 + 10*s' + s'^2 + z }-> 1 + s2 :|: s2 >= 0, s2 <= s', s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 3 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0, z' - 1 >= 0 div(z, z') -{ -6 + 8*z + z^2 }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1, z - 1 >= 0, z' = 1 + 0 div(z, z') -{ 2 }-> 1 + s5 :|: s5 >= 0, s5 <= 0, z - 1 >= 0, z' - 1 >= 0 encArg(z) -{ 13 + s13 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1, s14 >= 0, s14 <= x_2, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 11 + 10*s16 + s16^2 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 }-> s18 :|: s16 >= 0, s16 <= x_1, s17 >= 0, s17 <= x_2, s18 >= 0, s18 <= s16, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 16 + 30*s19*s20 + 3*s19^2*s20 + 10*s20 + s20^2 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 + 36*x_3 + 95*x_3^2 + 99*x_3^3 + 9*x_3^4 }-> s22 :|: s19 >= 0, s19 <= x_1, s20 >= 0, s20 <= x_2, s21 >= 0, s21 <= x_3, s22 >= 0, s22 <= s19, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -26 + 107*z + -148*z^2 + 63*z^3 + 9*z^4 }-> 1 + s12 :|: s12 >= 0, s12 <= z - 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 11 + 10*s27 + s27^2 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 }-> s29 :|: s27 >= 0, s27 <= z, s28 >= 0, s28 <= z', s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 16 + 30*s30*s31 + 3*s30^2*s31 + 10*s31 + s31^2 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 + 36*z'' + 95*z''^2 + 99*z''^3 + 9*z''^4 }-> s33 :|: s30 >= 0, s30 <= z, s31 >= 0, s31 <= z', s32 >= 0, s32 <= z'', s33 >= 0, s33 <= s30, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 13 + s23 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 }-> s25 :|: s23 >= 0, s23 <= z, s24 >= 0, s24 <= z', s25 >= 0, s25 <= s23, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z, z >= 0 f(z, z', z'') -{ 3 + 10*s10 + s10^2 }-> s11 :|: s10 >= 0, s10 <= z, s11 >= 0, s11 <= s10, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 4 + 10*s6 + s6^2 }-> s7 :|: s6 >= 0, s6 <= z, s7 >= 0, s7 <= s6, z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 6 + 10*s'' + 30*s''*z + 3*s''*z^2 + s''^2 + 10*s8 + s8^2 + z' }-> s9 :|: s8 >= 0, s8 <= z, s9 >= 0, s9 <= s8, s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 3 + z }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_div}, {encode_minus}, {encode_f}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [3 + z], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^2) [1 + 10*z + z^2], size: O(n^1) [z] f: runtime: O(n^3) [1 + 30*z*z' + 3*z^2*z' + 10*z' + z'^2], size: O(n^1) [z] encArg: runtime: O(n^4) [5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4], size: O(n^1) [z] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_div after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 4 + 10*s' + s'^2 + z }-> 1 + s2 :|: s2 >= 0, s2 <= s', s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 3 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0, z' - 1 >= 0 div(z, z') -{ -6 + 8*z + z^2 }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1, z - 1 >= 0, z' = 1 + 0 div(z, z') -{ 2 }-> 1 + s5 :|: s5 >= 0, s5 <= 0, z - 1 >= 0, z' - 1 >= 0 encArg(z) -{ 13 + s13 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1, s14 >= 0, s14 <= x_2, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 11 + 10*s16 + s16^2 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 }-> s18 :|: s16 >= 0, s16 <= x_1, s17 >= 0, s17 <= x_2, s18 >= 0, s18 <= s16, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 16 + 30*s19*s20 + 3*s19^2*s20 + 10*s20 + s20^2 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 + 36*x_3 + 95*x_3^2 + 99*x_3^3 + 9*x_3^4 }-> s22 :|: s19 >= 0, s19 <= x_1, s20 >= 0, s20 <= x_2, s21 >= 0, s21 <= x_3, s22 >= 0, s22 <= s19, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -26 + 107*z + -148*z^2 + 63*z^3 + 9*z^4 }-> 1 + s12 :|: s12 >= 0, s12 <= z - 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 11 + 10*s27 + s27^2 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 }-> s29 :|: s27 >= 0, s27 <= z, s28 >= 0, s28 <= z', s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 16 + 30*s30*s31 + 3*s30^2*s31 + 10*s31 + s31^2 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 + 36*z'' + 95*z''^2 + 99*z''^3 + 9*z''^4 }-> s33 :|: s30 >= 0, s30 <= z, s31 >= 0, s31 <= z', s32 >= 0, s32 <= z'', s33 >= 0, s33 <= s30, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 13 + s23 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 }-> s25 :|: s23 >= 0, s23 <= z, s24 >= 0, s24 <= z', s25 >= 0, s25 <= s23, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z, z >= 0 f(z, z', z'') -{ 3 + 10*s10 + s10^2 }-> s11 :|: s10 >= 0, s10 <= z, s11 >= 0, s11 <= s10, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 4 + 10*s6 + s6^2 }-> s7 :|: s6 >= 0, s6 <= z, s7 >= 0, s7 <= s6, z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 6 + 10*s'' + 30*s''*z + 3*s''*z^2 + s''^2 + 10*s8 + s8^2 + z' }-> s9 :|: s8 >= 0, s8 <= z, s9 >= 0, s9 <= s8, s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 3 + z }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_div}, {encode_minus}, {encode_f}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [3 + z], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^2) [1 + 10*z + z^2], size: O(n^1) [z] f: runtime: O(n^3) [1 + 30*z*z' + 3*z^2*z' + 10*z' + z'^2], size: O(n^1) [z] encArg: runtime: O(n^4) [5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4], size: O(n^1) [z] encode_div: runtime: ?, size: O(n^1) [z] ---------------------------------------- (53) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_div after applying outer abstraction to obtain an ITS, resulting in: O(n^4) with polynomial bound: 11 + 46*z + 96*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 4 + 10*s' + s'^2 + z }-> 1 + s2 :|: s2 >= 0, s2 <= s', s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 3 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0, z' - 1 >= 0 div(z, z') -{ -6 + 8*z + z^2 }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1, z - 1 >= 0, z' = 1 + 0 div(z, z') -{ 2 }-> 1 + s5 :|: s5 >= 0, s5 <= 0, z - 1 >= 0, z' - 1 >= 0 encArg(z) -{ 13 + s13 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1, s14 >= 0, s14 <= x_2, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 11 + 10*s16 + s16^2 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 }-> s18 :|: s16 >= 0, s16 <= x_1, s17 >= 0, s17 <= x_2, s18 >= 0, s18 <= s16, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 16 + 30*s19*s20 + 3*s19^2*s20 + 10*s20 + s20^2 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 + 36*x_3 + 95*x_3^2 + 99*x_3^3 + 9*x_3^4 }-> s22 :|: s19 >= 0, s19 <= x_1, s20 >= 0, s20 <= x_2, s21 >= 0, s21 <= x_3, s22 >= 0, s22 <= s19, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -26 + 107*z + -148*z^2 + 63*z^3 + 9*z^4 }-> 1 + s12 :|: s12 >= 0, s12 <= z - 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 11 + 10*s27 + s27^2 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 }-> s29 :|: s27 >= 0, s27 <= z, s28 >= 0, s28 <= z', s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 16 + 30*s30*s31 + 3*s30^2*s31 + 10*s31 + s31^2 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 + 36*z'' + 95*z''^2 + 99*z''^3 + 9*z''^4 }-> s33 :|: s30 >= 0, s30 <= z, s31 >= 0, s31 <= z', s32 >= 0, s32 <= z'', s33 >= 0, s33 <= s30, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 13 + s23 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 }-> s25 :|: s23 >= 0, s23 <= z, s24 >= 0, s24 <= z', s25 >= 0, s25 <= s23, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z, z >= 0 f(z, z', z'') -{ 3 + 10*s10 + s10^2 }-> s11 :|: s10 >= 0, s10 <= z, s11 >= 0, s11 <= s10, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 4 + 10*s6 + s6^2 }-> s7 :|: s6 >= 0, s6 <= z, s7 >= 0, s7 <= s6, z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 6 + 10*s'' + 30*s''*z + 3*s''*z^2 + s''^2 + 10*s8 + s8^2 + z' }-> s9 :|: s8 >= 0, s8 <= z, s9 >= 0, s9 <= s8, s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 3 + z }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_minus}, {encode_f}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [3 + z], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^2) [1 + 10*z + z^2], size: O(n^1) [z] f: runtime: O(n^3) [1 + 30*z*z' + 3*z^2*z' + 10*z' + z'^2], size: O(n^1) [z] encArg: runtime: O(n^4) [5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4], size: O(n^1) [z] encode_div: runtime: O(n^4) [11 + 46*z + 96*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4], size: O(n^1) [z] ---------------------------------------- (55) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 4 + 10*s' + s'^2 + z }-> 1 + s2 :|: s2 >= 0, s2 <= s', s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 3 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0, z' - 1 >= 0 div(z, z') -{ -6 + 8*z + z^2 }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1, z - 1 >= 0, z' = 1 + 0 div(z, z') -{ 2 }-> 1 + s5 :|: s5 >= 0, s5 <= 0, z - 1 >= 0, z' - 1 >= 0 encArg(z) -{ 13 + s13 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1, s14 >= 0, s14 <= x_2, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 11 + 10*s16 + s16^2 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 }-> s18 :|: s16 >= 0, s16 <= x_1, s17 >= 0, s17 <= x_2, s18 >= 0, s18 <= s16, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 16 + 30*s19*s20 + 3*s19^2*s20 + 10*s20 + s20^2 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 + 36*x_3 + 95*x_3^2 + 99*x_3^3 + 9*x_3^4 }-> s22 :|: s19 >= 0, s19 <= x_1, s20 >= 0, s20 <= x_2, s21 >= 0, s21 <= x_3, s22 >= 0, s22 <= s19, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -26 + 107*z + -148*z^2 + 63*z^3 + 9*z^4 }-> 1 + s12 :|: s12 >= 0, s12 <= z - 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 11 + 10*s27 + s27^2 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 }-> s29 :|: s27 >= 0, s27 <= z, s28 >= 0, s28 <= z', s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 16 + 30*s30*s31 + 3*s30^2*s31 + 10*s31 + s31^2 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 + 36*z'' + 95*z''^2 + 99*z''^3 + 9*z''^4 }-> s33 :|: s30 >= 0, s30 <= z, s31 >= 0, s31 <= z', s32 >= 0, s32 <= z'', s33 >= 0, s33 <= s30, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 13 + s23 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 }-> s25 :|: s23 >= 0, s23 <= z, s24 >= 0, s24 <= z', s25 >= 0, s25 <= s23, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z, z >= 0 f(z, z', z'') -{ 3 + 10*s10 + s10^2 }-> s11 :|: s10 >= 0, s10 <= z, s11 >= 0, s11 <= s10, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 4 + 10*s6 + s6^2 }-> s7 :|: s6 >= 0, s6 <= z, s7 >= 0, s7 <= s6, z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 6 + 10*s'' + 30*s''*z + 3*s''*z^2 + s''^2 + 10*s8 + s8^2 + z' }-> s9 :|: s8 >= 0, s8 <= z, s9 >= 0, s9 <= s8, s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 3 + z }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_minus}, {encode_f}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [3 + z], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^2) [1 + 10*z + z^2], size: O(n^1) [z] f: runtime: O(n^3) [1 + 30*z*z' + 3*z^2*z' + 10*z' + z'^2], size: O(n^1) [z] encArg: runtime: O(n^4) [5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4], size: O(n^1) [z] encode_div: runtime: O(n^4) [11 + 46*z + 96*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4], size: O(n^1) [z] ---------------------------------------- (57) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 4 + 10*s' + s'^2 + z }-> 1 + s2 :|: s2 >= 0, s2 <= s', s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 3 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0, z' - 1 >= 0 div(z, z') -{ -6 + 8*z + z^2 }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1, z - 1 >= 0, z' = 1 + 0 div(z, z') -{ 2 }-> 1 + s5 :|: s5 >= 0, s5 <= 0, z - 1 >= 0, z' - 1 >= 0 encArg(z) -{ 13 + s13 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1, s14 >= 0, s14 <= x_2, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 11 + 10*s16 + s16^2 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 }-> s18 :|: s16 >= 0, s16 <= x_1, s17 >= 0, s17 <= x_2, s18 >= 0, s18 <= s16, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 16 + 30*s19*s20 + 3*s19^2*s20 + 10*s20 + s20^2 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 + 36*x_3 + 95*x_3^2 + 99*x_3^3 + 9*x_3^4 }-> s22 :|: s19 >= 0, s19 <= x_1, s20 >= 0, s20 <= x_2, s21 >= 0, s21 <= x_3, s22 >= 0, s22 <= s19, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -26 + 107*z + -148*z^2 + 63*z^3 + 9*z^4 }-> 1 + s12 :|: s12 >= 0, s12 <= z - 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 11 + 10*s27 + s27^2 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 }-> s29 :|: s27 >= 0, s27 <= z, s28 >= 0, s28 <= z', s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 16 + 30*s30*s31 + 3*s30^2*s31 + 10*s31 + s31^2 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 + 36*z'' + 95*z''^2 + 99*z''^3 + 9*z''^4 }-> s33 :|: s30 >= 0, s30 <= z, s31 >= 0, s31 <= z', s32 >= 0, s32 <= z'', s33 >= 0, s33 <= s30, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 13 + s23 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 }-> s25 :|: s23 >= 0, s23 <= z, s24 >= 0, s24 <= z', s25 >= 0, s25 <= s23, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z, z >= 0 f(z, z', z'') -{ 3 + 10*s10 + s10^2 }-> s11 :|: s10 >= 0, s10 <= z, s11 >= 0, s11 <= s10, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 4 + 10*s6 + s6^2 }-> s7 :|: s6 >= 0, s6 <= z, s7 >= 0, s7 <= s6, z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 6 + 10*s'' + 30*s''*z + 3*s''*z^2 + s''^2 + 10*s8 + s8^2 + z' }-> s9 :|: s8 >= 0, s8 <= z, s9 >= 0, s9 <= s8, s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 3 + z }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_minus}, {encode_f}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [3 + z], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^2) [1 + 10*z + z^2], size: O(n^1) [z] f: runtime: O(n^3) [1 + 30*z*z' + 3*z^2*z' + 10*z' + z'^2], size: O(n^1) [z] encArg: runtime: O(n^4) [5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4], size: O(n^1) [z] encode_div: runtime: O(n^4) [11 + 46*z + 96*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4], size: O(n^1) [z] encode_minus: runtime: ?, size: O(n^1) [z] ---------------------------------------- (59) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_minus after applying outer abstraction to obtain an ITS, resulting in: O(n^4) with polynomial bound: 13 + 37*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 4 + 10*s' + s'^2 + z }-> 1 + s2 :|: s2 >= 0, s2 <= s', s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 3 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0, z' - 1 >= 0 div(z, z') -{ -6 + 8*z + z^2 }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1, z - 1 >= 0, z' = 1 + 0 div(z, z') -{ 2 }-> 1 + s5 :|: s5 >= 0, s5 <= 0, z - 1 >= 0, z' - 1 >= 0 encArg(z) -{ 13 + s13 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1, s14 >= 0, s14 <= x_2, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 11 + 10*s16 + s16^2 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 }-> s18 :|: s16 >= 0, s16 <= x_1, s17 >= 0, s17 <= x_2, s18 >= 0, s18 <= s16, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 16 + 30*s19*s20 + 3*s19^2*s20 + 10*s20 + s20^2 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 + 36*x_3 + 95*x_3^2 + 99*x_3^3 + 9*x_3^4 }-> s22 :|: s19 >= 0, s19 <= x_1, s20 >= 0, s20 <= x_2, s21 >= 0, s21 <= x_3, s22 >= 0, s22 <= s19, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -26 + 107*z + -148*z^2 + 63*z^3 + 9*z^4 }-> 1 + s12 :|: s12 >= 0, s12 <= z - 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 11 + 10*s27 + s27^2 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 }-> s29 :|: s27 >= 0, s27 <= z, s28 >= 0, s28 <= z', s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 16 + 30*s30*s31 + 3*s30^2*s31 + 10*s31 + s31^2 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 + 36*z'' + 95*z''^2 + 99*z''^3 + 9*z''^4 }-> s33 :|: s30 >= 0, s30 <= z, s31 >= 0, s31 <= z', s32 >= 0, s32 <= z'', s33 >= 0, s33 <= s30, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 13 + s23 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 }-> s25 :|: s23 >= 0, s23 <= z, s24 >= 0, s24 <= z', s25 >= 0, s25 <= s23, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z, z >= 0 f(z, z', z'') -{ 3 + 10*s10 + s10^2 }-> s11 :|: s10 >= 0, s10 <= z, s11 >= 0, s11 <= s10, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 4 + 10*s6 + s6^2 }-> s7 :|: s6 >= 0, s6 <= z, s7 >= 0, s7 <= s6, z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 6 + 10*s'' + 30*s''*z + 3*s''*z^2 + s''^2 + 10*s8 + s8^2 + z' }-> s9 :|: s8 >= 0, s8 <= z, s9 >= 0, s9 <= s8, s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 3 + z }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_f}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [3 + z], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^2) [1 + 10*z + z^2], size: O(n^1) [z] f: runtime: O(n^3) [1 + 30*z*z' + 3*z^2*z' + 10*z' + z'^2], size: O(n^1) [z] encArg: runtime: O(n^4) [5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4], size: O(n^1) [z] encode_div: runtime: O(n^4) [11 + 46*z + 96*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4], size: O(n^1) [z] encode_minus: runtime: O(n^4) [13 + 37*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4], size: O(n^1) [z] ---------------------------------------- (61) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 4 + 10*s' + s'^2 + z }-> 1 + s2 :|: s2 >= 0, s2 <= s', s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 3 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0, z' - 1 >= 0 div(z, z') -{ -6 + 8*z + z^2 }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1, z - 1 >= 0, z' = 1 + 0 div(z, z') -{ 2 }-> 1 + s5 :|: s5 >= 0, s5 <= 0, z - 1 >= 0, z' - 1 >= 0 encArg(z) -{ 13 + s13 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1, s14 >= 0, s14 <= x_2, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 11 + 10*s16 + s16^2 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 }-> s18 :|: s16 >= 0, s16 <= x_1, s17 >= 0, s17 <= x_2, s18 >= 0, s18 <= s16, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 16 + 30*s19*s20 + 3*s19^2*s20 + 10*s20 + s20^2 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 + 36*x_3 + 95*x_3^2 + 99*x_3^3 + 9*x_3^4 }-> s22 :|: s19 >= 0, s19 <= x_1, s20 >= 0, s20 <= x_2, s21 >= 0, s21 <= x_3, s22 >= 0, s22 <= s19, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -26 + 107*z + -148*z^2 + 63*z^3 + 9*z^4 }-> 1 + s12 :|: s12 >= 0, s12 <= z - 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 11 + 10*s27 + s27^2 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 }-> s29 :|: s27 >= 0, s27 <= z, s28 >= 0, s28 <= z', s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 16 + 30*s30*s31 + 3*s30^2*s31 + 10*s31 + s31^2 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 + 36*z'' + 95*z''^2 + 99*z''^3 + 9*z''^4 }-> s33 :|: s30 >= 0, s30 <= z, s31 >= 0, s31 <= z', s32 >= 0, s32 <= z'', s33 >= 0, s33 <= s30, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 13 + s23 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 }-> s25 :|: s23 >= 0, s23 <= z, s24 >= 0, s24 <= z', s25 >= 0, s25 <= s23, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z, z >= 0 f(z, z', z'') -{ 3 + 10*s10 + s10^2 }-> s11 :|: s10 >= 0, s10 <= z, s11 >= 0, s11 <= s10, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 4 + 10*s6 + s6^2 }-> s7 :|: s6 >= 0, s6 <= z, s7 >= 0, s7 <= s6, z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 6 + 10*s'' + 30*s''*z + 3*s''*z^2 + s''^2 + 10*s8 + s8^2 + z' }-> s9 :|: s8 >= 0, s8 <= z, s9 >= 0, s9 <= s8, s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 3 + z }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_f}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [3 + z], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^2) [1 + 10*z + z^2], size: O(n^1) [z] f: runtime: O(n^3) [1 + 30*z*z' + 3*z^2*z' + 10*z' + z'^2], size: O(n^1) [z] encArg: runtime: O(n^4) [5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4], size: O(n^1) [z] encode_div: runtime: O(n^4) [11 + 46*z + 96*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4], size: O(n^1) [z] encode_minus: runtime: O(n^4) [13 + 37*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4], size: O(n^1) [z] ---------------------------------------- (63) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 4 + 10*s' + s'^2 + z }-> 1 + s2 :|: s2 >= 0, s2 <= s', s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 3 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0, z' - 1 >= 0 div(z, z') -{ -6 + 8*z + z^2 }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1, z - 1 >= 0, z' = 1 + 0 div(z, z') -{ 2 }-> 1 + s5 :|: s5 >= 0, s5 <= 0, z - 1 >= 0, z' - 1 >= 0 encArg(z) -{ 13 + s13 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1, s14 >= 0, s14 <= x_2, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 11 + 10*s16 + s16^2 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 }-> s18 :|: s16 >= 0, s16 <= x_1, s17 >= 0, s17 <= x_2, s18 >= 0, s18 <= s16, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 16 + 30*s19*s20 + 3*s19^2*s20 + 10*s20 + s20^2 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 + 36*x_3 + 95*x_3^2 + 99*x_3^3 + 9*x_3^4 }-> s22 :|: s19 >= 0, s19 <= x_1, s20 >= 0, s20 <= x_2, s21 >= 0, s21 <= x_3, s22 >= 0, s22 <= s19, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -26 + 107*z + -148*z^2 + 63*z^3 + 9*z^4 }-> 1 + s12 :|: s12 >= 0, s12 <= z - 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 11 + 10*s27 + s27^2 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 }-> s29 :|: s27 >= 0, s27 <= z, s28 >= 0, s28 <= z', s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 16 + 30*s30*s31 + 3*s30^2*s31 + 10*s31 + s31^2 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 + 36*z'' + 95*z''^2 + 99*z''^3 + 9*z''^4 }-> s33 :|: s30 >= 0, s30 <= z, s31 >= 0, s31 <= z', s32 >= 0, s32 <= z'', s33 >= 0, s33 <= s30, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 13 + s23 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 }-> s25 :|: s23 >= 0, s23 <= z, s24 >= 0, s24 <= z', s25 >= 0, s25 <= s23, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z, z >= 0 f(z, z', z'') -{ 3 + 10*s10 + s10^2 }-> s11 :|: s10 >= 0, s10 <= z, s11 >= 0, s11 <= s10, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 4 + 10*s6 + s6^2 }-> s7 :|: s6 >= 0, s6 <= z, s7 >= 0, s7 <= s6, z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 6 + 10*s'' + 30*s''*z + 3*s''*z^2 + s''^2 + 10*s8 + s8^2 + z' }-> s9 :|: s8 >= 0, s8 <= z, s9 >= 0, s9 <= s8, s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 3 + z }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_f}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [3 + z], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^2) [1 + 10*z + z^2], size: O(n^1) [z] f: runtime: O(n^3) [1 + 30*z*z' + 3*z^2*z' + 10*z' + z'^2], size: O(n^1) [z] encArg: runtime: O(n^4) [5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4], size: O(n^1) [z] encode_div: runtime: O(n^4) [11 + 46*z + 96*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4], size: O(n^1) [z] encode_minus: runtime: O(n^4) [13 + 37*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4], size: O(n^1) [z] encode_f: runtime: ?, size: O(n^1) [z] ---------------------------------------- (65) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^4) with polynomial bound: 16 + 36*z + 30*z*z' + 95*z^2 + 3*z^2*z' + 99*z^3 + 9*z^4 + 46*z' + 96*z'^2 + 99*z'^3 + 9*z'^4 + 36*z'' + 95*z''^2 + 99*z''^3 + 9*z''^4 ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 4 + 10*s' + s'^2 + z }-> 1 + s2 :|: s2 >= 0, s2 <= s', s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 3 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0, z' - 1 >= 0 div(z, z') -{ -6 + 8*z + z^2 }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1, z - 1 >= 0, z' = 1 + 0 div(z, z') -{ 2 }-> 1 + s5 :|: s5 >= 0, s5 <= 0, z - 1 >= 0, z' - 1 >= 0 encArg(z) -{ 13 + s13 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1, s14 >= 0, s14 <= x_2, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 11 + 10*s16 + s16^2 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 }-> s18 :|: s16 >= 0, s16 <= x_1, s17 >= 0, s17 <= x_2, s18 >= 0, s18 <= s16, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 16 + 30*s19*s20 + 3*s19^2*s20 + 10*s20 + s20^2 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 + 36*x_3 + 95*x_3^2 + 99*x_3^3 + 9*x_3^4 }-> s22 :|: s19 >= 0, s19 <= x_1, s20 >= 0, s20 <= x_2, s21 >= 0, s21 <= x_3, s22 >= 0, s22 <= s19, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -26 + 107*z + -148*z^2 + 63*z^3 + 9*z^4 }-> 1 + s12 :|: s12 >= 0, s12 <= z - 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 11 + 10*s27 + s27^2 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 }-> s29 :|: s27 >= 0, s27 <= z, s28 >= 0, s28 <= z', s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 16 + 30*s30*s31 + 3*s30^2*s31 + 10*s31 + s31^2 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 + 36*z'' + 95*z''^2 + 99*z''^3 + 9*z''^4 }-> s33 :|: s30 >= 0, s30 <= z, s31 >= 0, s31 <= z', s32 >= 0, s32 <= z'', s33 >= 0, s33 <= s30, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 13 + s23 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 }-> s25 :|: s23 >= 0, s23 <= z, s24 >= 0, s24 <= z', s25 >= 0, s25 <= s23, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z, z >= 0 f(z, z', z'') -{ 3 + 10*s10 + s10^2 }-> s11 :|: s10 >= 0, s10 <= z, s11 >= 0, s11 <= s10, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 4 + 10*s6 + s6^2 }-> s7 :|: s6 >= 0, s6 <= z, s7 >= 0, s7 <= s6, z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 6 + 10*s'' + 30*s''*z + 3*s''*z^2 + s''^2 + 10*s8 + s8^2 + z' }-> s9 :|: s8 >= 0, s8 <= z, s9 >= 0, s9 <= s8, s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 3 + z }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: minus: runtime: O(n^1) [3 + z], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^2) [1 + 10*z + z^2], size: O(n^1) [z] f: runtime: O(n^3) [1 + 30*z*z' + 3*z^2*z' + 10*z' + z'^2], size: O(n^1) [z] encArg: runtime: O(n^4) [5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4], size: O(n^1) [z] encode_div: runtime: O(n^4) [11 + 46*z + 96*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4], size: O(n^1) [z] encode_minus: runtime: O(n^4) [13 + 37*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4], size: O(n^1) [z] encode_f: runtime: O(n^4) [16 + 36*z + 30*z*z' + 95*z^2 + 3*z^2*z' + 99*z^3 + 9*z^4 + 46*z' + 96*z'^2 + 99*z'^3 + 9*z'^4 + 36*z'' + 95*z''^2 + 99*z''^3 + 9*z''^4], size: O(n^1) [z] ---------------------------------------- (67) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 4 + 10*s' + s'^2 + z }-> 1 + s2 :|: s2 >= 0, s2 <= s', s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 3 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0, z' - 1 >= 0 div(z, z') -{ -6 + 8*z + z^2 }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1, z - 1 >= 0, z' = 1 + 0 div(z, z') -{ 2 }-> 1 + s5 :|: s5 >= 0, s5 <= 0, z - 1 >= 0, z' - 1 >= 0 encArg(z) -{ 13 + s13 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1, s14 >= 0, s14 <= x_2, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 11 + 10*s16 + s16^2 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 }-> s18 :|: s16 >= 0, s16 <= x_1, s17 >= 0, s17 <= x_2, s18 >= 0, s18 <= s16, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 16 + 30*s19*s20 + 3*s19^2*s20 + 10*s20 + s20^2 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 + 36*x_3 + 95*x_3^2 + 99*x_3^3 + 9*x_3^4 }-> s22 :|: s19 >= 0, s19 <= x_1, s20 >= 0, s20 <= x_2, s21 >= 0, s21 <= x_3, s22 >= 0, s22 <= s19, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -26 + 107*z + -148*z^2 + 63*z^3 + 9*z^4 }-> 1 + s12 :|: s12 >= 0, s12 <= z - 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 11 + 10*s27 + s27^2 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 }-> s29 :|: s27 >= 0, s27 <= z, s28 >= 0, s28 <= z', s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 16 + 30*s30*s31 + 3*s30^2*s31 + 10*s31 + s31^2 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 + 36*z'' + 95*z''^2 + 99*z''^3 + 9*z''^4 }-> s33 :|: s30 >= 0, s30 <= z, s31 >= 0, s31 <= z', s32 >= 0, s32 <= z'', s33 >= 0, s33 <= s30, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 13 + s23 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 }-> s25 :|: s23 >= 0, s23 <= z, s24 >= 0, s24 <= z', s25 >= 0, s25 <= s23, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z, z >= 0 f(z, z', z'') -{ 3 + 10*s10 + s10^2 }-> s11 :|: s10 >= 0, s10 <= z, s11 >= 0, s11 <= s10, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 4 + 10*s6 + s6^2 }-> s7 :|: s6 >= 0, s6 <= z, s7 >= 0, s7 <= s6, z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 6 + 10*s'' + 30*s''*z + 3*s''*z^2 + s''^2 + 10*s8 + s8^2 + z' }-> s9 :|: s8 >= 0, s8 <= z, s9 >= 0, s9 <= s8, s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 3 + z }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: minus: runtime: O(n^1) [3 + z], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^2) [1 + 10*z + z^2], size: O(n^1) [z] f: runtime: O(n^3) [1 + 30*z*z' + 3*z^2*z' + 10*z' + z'^2], size: O(n^1) [z] encArg: runtime: O(n^4) [5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4], size: O(n^1) [z] encode_div: runtime: O(n^4) [11 + 46*z + 96*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4], size: O(n^1) [z] encode_minus: runtime: O(n^4) [13 + 37*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4], size: O(n^1) [z] encode_f: runtime: O(n^4) [16 + 36*z + 30*z*z' + 95*z^2 + 3*z^2*z' + 99*z^3 + 9*z^4 + 46*z' + 96*z'^2 + 99*z'^3 + 9*z'^4 + 36*z'' + 95*z''^2 + 99*z''^3 + 9*z''^4], size: O(n^1) [z] ---------------------------------------- (69) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (70) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 4 + 10*s' + s'^2 + z }-> 1 + s2 :|: s2 >= 0, s2 <= s', s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 3 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0, z' - 1 >= 0 div(z, z') -{ -6 + 8*z + z^2 }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1, z - 1 >= 0, z' = 1 + 0 div(z, z') -{ 2 }-> 1 + s5 :|: s5 >= 0, s5 <= 0, z - 1 >= 0, z' - 1 >= 0 encArg(z) -{ 13 + s13 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1, s14 >= 0, s14 <= x_2, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 11 + 10*s16 + s16^2 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 }-> s18 :|: s16 >= 0, s16 <= x_1, s17 >= 0, s17 <= x_2, s18 >= 0, s18 <= s16, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 16 + 30*s19*s20 + 3*s19^2*s20 + 10*s20 + s20^2 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 + 36*x_3 + 95*x_3^2 + 99*x_3^3 + 9*x_3^4 }-> s22 :|: s19 >= 0, s19 <= x_1, s20 >= 0, s20 <= x_2, s21 >= 0, s21 <= x_3, s22 >= 0, s22 <= s19, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -26 + 107*z + -148*z^2 + 63*z^3 + 9*z^4 }-> 1 + s12 :|: s12 >= 0, s12 <= z - 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 11 + 10*s27 + s27^2 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 }-> s29 :|: s27 >= 0, s27 <= z, s28 >= 0, s28 <= z', s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 16 + 30*s30*s31 + 3*s30^2*s31 + 10*s31 + s31^2 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 + 36*z'' + 95*z''^2 + 99*z''^3 + 9*z''^4 }-> s33 :|: s30 >= 0, s30 <= z, s31 >= 0, s31 <= z', s32 >= 0, s32 <= z'', s33 >= 0, s33 <= s30, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 13 + s23 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 }-> s25 :|: s23 >= 0, s23 <= z, s24 >= 0, s24 <= z', s25 >= 0, s25 <= s23, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z, z >= 0 f(z, z', z'') -{ 3 + 10*s10 + s10^2 }-> s11 :|: s10 >= 0, s10 <= z, s11 >= 0, s11 <= s10, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 4 + 10*s6 + s6^2 }-> s7 :|: s6 >= 0, s6 <= z, s7 >= 0, s7 <= s6, z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 6 + 10*s'' + 30*s''*z + 3*s''*z^2 + s''^2 + 10*s8 + s8^2 + z' }-> s9 :|: s8 >= 0, s8 <= z, s9 >= 0, s9 <= s8, s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 3 + z }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: minus: runtime: O(n^1) [3 + z], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^2) [1 + 10*z + z^2], size: O(n^1) [z] f: runtime: O(n^3) [1 + 30*z*z' + 3*z^2*z' + 10*z' + z'^2], size: O(n^1) [z] encArg: runtime: O(n^4) [5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4], size: O(n^1) [z] encode_div: runtime: O(n^4) [11 + 46*z + 96*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4], size: O(n^1) [z] encode_minus: runtime: O(n^4) [13 + 37*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4], size: O(n^1) [z] encode_f: runtime: O(n^4) [16 + 36*z + 30*z*z' + 95*z^2 + 3*z^2*z' + 99*z^3 + 9*z^4 + 46*z' + 96*z'^2 + 99*z'^3 + 9*z'^4 + 36*z'' + 95*z''^2 + 99*z''^3 + 9*z''^4], size: O(n^1) [z] encode_s: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (71) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^4) with polynomial bound: 5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 ---------------------------------------- (72) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 div(z, z') -{ 3 }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z = 1 + (z' - 1) div(z, z') -{ 4 + 10*s' + s'^2 + z }-> 1 + s2 :|: s2 >= 0, s2 <= s', s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 div(z, z') -{ 3 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0, z' - 1 >= 0 div(z, z') -{ -6 + 8*z + z^2 }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1, z - 1 >= 0, z' = 1 + 0 div(z, z') -{ 2 }-> 1 + s5 :|: s5 >= 0, s5 <= 0, z - 1 >= 0, z' - 1 >= 0 encArg(z) -{ 13 + s13 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 }-> s15 :|: s13 >= 0, s13 <= x_1, s14 >= 0, s14 <= x_2, s15 >= 0, s15 <= s13, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 11 + 10*s16 + s16^2 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 }-> s18 :|: s16 >= 0, s16 <= x_1, s17 >= 0, s17 <= x_2, s18 >= 0, s18 <= s16, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 16 + 30*s19*s20 + 3*s19^2*s20 + 10*s20 + s20^2 + 36*x_1 + 95*x_1^2 + 99*x_1^3 + 9*x_1^4 + 36*x_2 + 95*x_2^2 + 99*x_2^3 + 9*x_2^4 + 36*x_3 + 95*x_3^2 + 99*x_3^3 + 9*x_3^4 }-> s22 :|: s19 >= 0, s19 <= x_1, s20 >= 0, s20 <= x_2, s21 >= 0, s21 <= x_3, s22 >= 0, s22 <= s19, x_1 >= 0, z = 1 + x_1 + x_2 + x_3, x_3 >= 0, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -26 + 107*z + -148*z^2 + 63*z^3 + 9*z^4 }-> 1 + s12 :|: s12 >= 0, s12 <= z - 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_div(z, z') -{ 11 + 10*s27 + s27^2 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 }-> s29 :|: s27 >= 0, s27 <= z, s28 >= 0, s28 <= z', s29 >= 0, s29 <= s27, z >= 0, z' >= 0 encode_div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_f(z, z', z'') -{ 16 + 30*s30*s31 + 3*s30^2*s31 + 10*s31 + s31^2 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 + 36*z'' + 95*z''^2 + 99*z''^3 + 9*z''^4 }-> s33 :|: s30 >= 0, s30 <= z, s31 >= 0, s31 <= z', s32 >= 0, s32 <= z'', s33 >= 0, s33 <= s30, z >= 0, z'' >= 0, z' >= 0 encode_f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 encode_minus(z, z') -{ 13 + s23 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4 }-> s25 :|: s23 >= 0, s23 <= z, s24 >= 0, s24 <= z', s25 >= 0, s25 <= s23, z >= 0, z' >= 0 encode_minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4 }-> 1 + s26 :|: s26 >= 0, s26 <= z, z >= 0 f(z, z', z'') -{ 3 + 10*s10 + s10^2 }-> s11 :|: s10 >= 0, s10 <= z, s11 >= 0, s11 <= s10, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 4 + 10*s6 + s6^2 }-> s7 :|: s6 >= 0, s6 <= z, s7 >= 0, s7 <= s6, z'' >= 0, z >= 0, z' = 1 + 0 f(z, z', z'') -{ 6 + 10*s'' + 30*s''*z + 3*s''*z^2 + s''^2 + 10*s8 + s8^2 + z' }-> s9 :|: s8 >= 0, s8 <= z, s9 >= 0, s9 <= s8, s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 f(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 minus(z, z') -{ 3 + z }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: Previous analysis results are: minus: runtime: O(n^1) [3 + z], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] div: runtime: O(n^2) [1 + 10*z + z^2], size: O(n^1) [z] f: runtime: O(n^3) [1 + 30*z*z' + 3*z^2*z' + 10*z' + z'^2], size: O(n^1) [z] encArg: runtime: O(n^4) [5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4], size: O(n^1) [z] encode_div: runtime: O(n^4) [11 + 46*z + 96*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4], size: O(n^1) [z] encode_minus: runtime: O(n^4) [13 + 37*z + 95*z^2 + 99*z^3 + 9*z^4 + 36*z' + 95*z'^2 + 99*z'^3 + 9*z'^4], size: O(n^1) [z] encode_f: runtime: O(n^4) [16 + 36*z + 30*z*z' + 95*z^2 + 3*z^2*z' + 99*z^3 + 9*z^4 + 46*z' + 96*z'^2 + 99*z'^3 + 9*z'^4 + 36*z'' + 95*z''^2 + 99*z''^3 + 9*z''^4], size: O(n^1) [z] encode_s: runtime: O(n^4) [5 + 36*z + 95*z^2 + 99*z^3 + 9*z^4], size: O(n^1) [1 + z] ---------------------------------------- (73) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (74) BOUNDS(1, n^4) ---------------------------------------- (75) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (76) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^4). The TRS R consists of the following rules: minus(x, x) -> 0 minus(s(x), s(y)) -> minus(x, y) minus(0, x) -> 0 minus(x, 0) -> x div(s(x), s(y)) -> s(div(minus(x, y), s(y))) div(0, s(y)) -> 0 f(x, 0, b) -> x f(x, s(y), b) -> div(f(x, minus(s(y), s(0)), b), b) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (77) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence minus(s(x), s(y)) ->^+ minus(x, y) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(x), y / s(y)]. The result substitution is [ ]. ---------------------------------------- (78) Complex Obligation (BEST) ---------------------------------------- (79) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^4). The TRS R consists of the following rules: minus(x, x) -> 0 minus(s(x), s(y)) -> minus(x, y) minus(0, x) -> 0 minus(x, 0) -> x div(s(x), s(y)) -> s(div(minus(x, y), s(y))) div(0, s(y)) -> 0 f(x, 0, b) -> x f(x, s(y), b) -> div(f(x, minus(s(y), s(0)), b), b) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (80) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (81) BOUNDS(n^1, INF) ---------------------------------------- (82) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^4). The TRS R consists of the following rules: minus(x, x) -> 0 minus(s(x), s(y)) -> minus(x, y) minus(0, x) -> 0 minus(x, 0) -> x div(s(x), s(y)) -> s(div(minus(x, y), s(y))) div(0, s(y)) -> 0 f(x, 0, b) -> x f(x, s(y), b) -> div(f(x, minus(s(y), s(0)), b), b) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST