/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 235 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 526 ms] (12) proven lower bound (13) LowerBoundPropagationProof [FINISHED, 0 ms] (14) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: *(0, x) -> 0 *(1, x) -> x *(2, 2) -> .(1, 0) *(3, x) -> .(x, *(min, x)) *(min, min) -> 1 *(2, min) -> .(min, 2) *(.(x, y), z) -> .(*(x, z), *(y, z)) *(+(y, z), x) -> +(*(x, y), *(x, z)) +(0, x) -> x +(x, x) -> *(2, x) +(1, 2) -> 3 +(1, min) -> 0 +(2, min) -> 1 +(3, x) -> .(1, +(min, x)) +(.(x, y), z) -> .(x, +(y, z)) +(*(2, x), x) -> *(3, x) +(*(min, x), x) -> 0 +(*(2, v), *(min, v)) -> v .(min, 3) -> min .(x, min) -> .(+(min, x), 3) .(0, x) -> x .(x, .(y, z)) -> .(+(x, y), z) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(1) -> 1 encArg(2) -> 2 encArg(3) -> 3 encArg(min) -> min encArg(cons_*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_1 -> 1 encode_2 -> 2 encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_3 -> 3 encode_min -> min encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: *(0, x) -> 0 *(1, x) -> x *(2, 2) -> .(1, 0) *(3, x) -> .(x, *(min, x)) *(min, min) -> 1 *(2, min) -> .(min, 2) *(.(x, y), z) -> .(*(x, z), *(y, z)) *(+(y, z), x) -> +(*(x, y), *(x, z)) +(0, x) -> x +(x, x) -> *(2, x) +(1, 2) -> 3 +(1, min) -> 0 +(2, min) -> 1 +(3, x) -> .(1, +(min, x)) +(.(x, y), z) -> .(x, +(y, z)) +(*(2, x), x) -> *(3, x) +(*(min, x), x) -> 0 +(*(2, v), *(min, v)) -> v .(min, 3) -> min .(x, min) -> .(+(min, x), 3) .(0, x) -> x .(x, .(y, z)) -> .(+(x, y), z) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(1) -> 1 encArg(2) -> 2 encArg(3) -> 3 encArg(min) -> min encArg(cons_*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_1 -> 1 encode_2 -> 2 encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_3 -> 3 encode_min -> min encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: *(0, x) -> 0 *(1, x) -> x *(2, 2) -> .(1, 0) *(3, x) -> .(x, *(min, x)) *(min, min) -> 1 *(2, min) -> .(min, 2) *(.(x, y), z) -> .(*(x, z), *(y, z)) *(+(y, z), x) -> +(*(x, y), *(x, z)) +(0, x) -> x +(x, x) -> *(2, x) +(1, 2) -> 3 +(1, min) -> 0 +(2, min) -> 1 +(3, x) -> .(1, +(min, x)) +(.(x, y), z) -> .(x, +(y, z)) +(*(2, x), x) -> *(3, x) +(*(min, x), x) -> 0 +(*(2, v), *(min, v)) -> v .(min, 3) -> min .(x, min) -> .(+(min, x), 3) .(0, x) -> x .(x, .(y, z)) -> .(+(x, y), z) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(1) -> 1 encArg(2) -> 2 encArg(3) -> 3 encArg(min) -> min encArg(cons_*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_1 -> 1 encode_2 -> 2 encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_3 -> 3 encode_min -> min encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: *'(0', x) -> 0' *'(1', x) -> x *'(2', 2') -> .(1', 0') *'(3', x) -> .(x, *'(min, x)) *'(min, min) -> 1' *'(2', min) -> .(min, 2') *'(.(x, y), z) -> .(*'(x, z), *'(y, z)) *'(+'(y, z), x) -> +'(*'(x, y), *'(x, z)) +'(0', x) -> x +'(x, x) -> *'(2', x) +'(1', 2') -> 3' +'(1', min) -> 0' +'(2', min) -> 1' +'(3', x) -> .(1', +'(min, x)) +'(.(x, y), z) -> .(x, +'(y, z)) +'(*'(2', x), x) -> *'(3', x) +'(*'(min, x), x) -> 0' +'(*'(2', v), *'(min, v)) -> v .(min, 3') -> min .(x, min) -> .(+'(min, x), 3') .(0', x) -> x .(x, .(y, z)) -> .(+'(x, y), z) The (relative) TRS S consists of the following rules: encArg(0') -> 0' encArg(1') -> 1' encArg(2') -> 2' encArg(3') -> 3' encArg(min) -> min encArg(cons_*(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encArg(cons_.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_1 -> 1' encode_2 -> 2' encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_3 -> 3' encode_min -> min encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: *'(0', x) -> 0' *'(1', x) -> x *'(2', 2') -> .(1', 0') *'(3', x) -> .(x, *'(min, x)) *'(min, min) -> 1' *'(2', min) -> .(min, 2') *'(.(x, y), z) -> .(*'(x, z), *'(y, z)) *'(+'(y, z), x) -> +'(*'(x, y), *'(x, z)) +'(0', x) -> x +'(x, x) -> *'(2', x) +'(1', 2') -> 3' +'(1', min) -> 0' +'(2', min) -> 1' +'(3', x) -> .(1', +'(min, x)) +'(.(x, y), z) -> .(x, +'(y, z)) +'(*'(2', x), x) -> *'(3', x) +'(*'(min, x), x) -> 0' +'(*'(2', v), *'(min, v)) -> v .(min, 3') -> min .(x, min) -> .(+'(min, x), 3') .(0', x) -> x .(x, .(y, z)) -> .(+'(x, y), z) encArg(0') -> 0' encArg(1') -> 1' encArg(2') -> 2' encArg(3') -> 3' encArg(min) -> min encArg(cons_*(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encArg(cons_.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_1 -> 1' encode_2 -> 2' encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_3 -> 3' encode_min -> min encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) Types: *' :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. 0' :: 0':1':2':3':min:cons_*:cons_+:cons_. 1' :: 0':1':2':3':min:cons_*:cons_+:cons_. 2' :: 0':1':2':3':min:cons_*:cons_+:cons_. . :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. 3' :: 0':1':2':3':min:cons_*:cons_+:cons_. min :: 0':1':2':3':min:cons_*:cons_+:cons_. +' :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. encArg :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. cons_* :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. cons_+ :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. cons_. :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. encode_* :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. encode_0 :: 0':1':2':3':min:cons_*:cons_+:cons_. encode_1 :: 0':1':2':3':min:cons_*:cons_+:cons_. encode_2 :: 0':1':2':3':min:cons_*:cons_+:cons_. encode_. :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. encode_3 :: 0':1':2':3':min:cons_*:cons_+:cons_. encode_min :: 0':1':2':3':min:cons_*:cons_+:cons_. encode_+ :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. hole_0':1':2':3':min:cons_*:cons_+:cons_.1_4 :: 0':1':2':3':min:cons_*:cons_+:cons_. gen_0':1':2':3':min:cons_*:cons_+:cons_.2_4 :: Nat -> 0':1':2':3':min:cons_*:cons_+:cons_. ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: *', ., +', encArg They will be analysed ascendingly in the following order: *' = . *' = +' *' < encArg . = +' . < encArg +' < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: *'(0', x) -> 0' *'(1', x) -> x *'(2', 2') -> .(1', 0') *'(3', x) -> .(x, *'(min, x)) *'(min, min) -> 1' *'(2', min) -> .(min, 2') *'(.(x, y), z) -> .(*'(x, z), *'(y, z)) *'(+'(y, z), x) -> +'(*'(x, y), *'(x, z)) +'(0', x) -> x +'(x, x) -> *'(2', x) +'(1', 2') -> 3' +'(1', min) -> 0' +'(2', min) -> 1' +'(3', x) -> .(1', +'(min, x)) +'(.(x, y), z) -> .(x, +'(y, z)) +'(*'(2', x), x) -> *'(3', x) +'(*'(min, x), x) -> 0' +'(*'(2', v), *'(min, v)) -> v .(min, 3') -> min .(x, min) -> .(+'(min, x), 3') .(0', x) -> x .(x, .(y, z)) -> .(+'(x, y), z) encArg(0') -> 0' encArg(1') -> 1' encArg(2') -> 2' encArg(3') -> 3' encArg(min) -> min encArg(cons_*(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encArg(cons_.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_1 -> 1' encode_2 -> 2' encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_3 -> 3' encode_min -> min encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) Types: *' :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. 0' :: 0':1':2':3':min:cons_*:cons_+:cons_. 1' :: 0':1':2':3':min:cons_*:cons_+:cons_. 2' :: 0':1':2':3':min:cons_*:cons_+:cons_. . :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. 3' :: 0':1':2':3':min:cons_*:cons_+:cons_. min :: 0':1':2':3':min:cons_*:cons_+:cons_. +' :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. encArg :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. cons_* :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. cons_+ :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. cons_. :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. encode_* :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. encode_0 :: 0':1':2':3':min:cons_*:cons_+:cons_. encode_1 :: 0':1':2':3':min:cons_*:cons_+:cons_. encode_2 :: 0':1':2':3':min:cons_*:cons_+:cons_. encode_. :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. encode_3 :: 0':1':2':3':min:cons_*:cons_+:cons_. encode_min :: 0':1':2':3':min:cons_*:cons_+:cons_. encode_+ :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. hole_0':1':2':3':min:cons_*:cons_+:cons_.1_4 :: 0':1':2':3':min:cons_*:cons_+:cons_. gen_0':1':2':3':min:cons_*:cons_+:cons_.2_4 :: Nat -> 0':1':2':3':min:cons_*:cons_+:cons_. Generator Equations: gen_0':1':2':3':min:cons_*:cons_+:cons_.2_4(0) <=> 0' gen_0':1':2':3':min:cons_*:cons_+:cons_.2_4(+(x, 1)) <=> cons_*(0', gen_0':1':2':3':min:cons_*:cons_+:cons_.2_4(x)) The following defined symbols remain to be analysed: ., *', +', encArg They will be analysed ascendingly in the following order: *' = . *' = +' *' < encArg . = +' . < encArg +' < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_0':1':2':3':min:cons_*:cons_+:cons_.2_4(n4161_4)) -> gen_0':1':2':3':min:cons_*:cons_+:cons_.2_4(0), rt in Omega(n4161_4) Induction Base: encArg(gen_0':1':2':3':min:cons_*:cons_+:cons_.2_4(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_0':1':2':3':min:cons_*:cons_+:cons_.2_4(+(n4161_4, 1))) ->_R^Omega(0) *'(encArg(0'), encArg(gen_0':1':2':3':min:cons_*:cons_+:cons_.2_4(n4161_4))) ->_R^Omega(0) *'(0', encArg(gen_0':1':2':3':min:cons_*:cons_+:cons_.2_4(n4161_4))) ->_IH *'(0', gen_0':1':2':3':min:cons_*:cons_+:cons_.2_4(0)) ->_R^Omega(1) 0' We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: *'(0', x) -> 0' *'(1', x) -> x *'(2', 2') -> .(1', 0') *'(3', x) -> .(x, *'(min, x)) *'(min, min) -> 1' *'(2', min) -> .(min, 2') *'(.(x, y), z) -> .(*'(x, z), *'(y, z)) *'(+'(y, z), x) -> +'(*'(x, y), *'(x, z)) +'(0', x) -> x +'(x, x) -> *'(2', x) +'(1', 2') -> 3' +'(1', min) -> 0' +'(2', min) -> 1' +'(3', x) -> .(1', +'(min, x)) +'(.(x, y), z) -> .(x, +'(y, z)) +'(*'(2', x), x) -> *'(3', x) +'(*'(min, x), x) -> 0' +'(*'(2', v), *'(min, v)) -> v .(min, 3') -> min .(x, min) -> .(+'(min, x), 3') .(0', x) -> x .(x, .(y, z)) -> .(+'(x, y), z) encArg(0') -> 0' encArg(1') -> 1' encArg(2') -> 2' encArg(3') -> 3' encArg(min) -> min encArg(cons_*(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encArg(cons_.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_1 -> 1' encode_2 -> 2' encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_3 -> 3' encode_min -> min encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) Types: *' :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. 0' :: 0':1':2':3':min:cons_*:cons_+:cons_. 1' :: 0':1':2':3':min:cons_*:cons_+:cons_. 2' :: 0':1':2':3':min:cons_*:cons_+:cons_. . :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. 3' :: 0':1':2':3':min:cons_*:cons_+:cons_. min :: 0':1':2':3':min:cons_*:cons_+:cons_. +' :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. encArg :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. cons_* :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. cons_+ :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. cons_. :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. encode_* :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. encode_0 :: 0':1':2':3':min:cons_*:cons_+:cons_. encode_1 :: 0':1':2':3':min:cons_*:cons_+:cons_. encode_2 :: 0':1':2':3':min:cons_*:cons_+:cons_. encode_. :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. encode_3 :: 0':1':2':3':min:cons_*:cons_+:cons_. encode_min :: 0':1':2':3':min:cons_*:cons_+:cons_. encode_+ :: 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. -> 0':1':2':3':min:cons_*:cons_+:cons_. hole_0':1':2':3':min:cons_*:cons_+:cons_.1_4 :: 0':1':2':3':min:cons_*:cons_+:cons_. gen_0':1':2':3':min:cons_*:cons_+:cons_.2_4 :: Nat -> 0':1':2':3':min:cons_*:cons_+:cons_. Generator Equations: gen_0':1':2':3':min:cons_*:cons_+:cons_.2_4(0) <=> 0' gen_0':1':2':3':min:cons_*:cons_+:cons_.2_4(+(x, 1)) <=> cons_*(0', gen_0':1':2':3':min:cons_*:cons_+:cons_.2_4(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (13) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (14) BOUNDS(n^1, INF)