/export/starexec/sandbox2/solver/bin/starexec_run_tct_dci /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?,O(n^1)) * Step 1: WeightGap. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: app(cons(X),YS) -> cons(X) app(nil(),YS) -> YS from(X) -> cons(X) prefix(L) -> cons(nil()) zWadr(XS,nil()) -> nil() zWadr(cons(X),cons(Y)) -> cons(app(Y,cons(X))) zWadr(nil(),YS) -> nil() - Signature: {app/2,from/1,prefix/1,zWadr/2} / {cons/1,nil/0} - Obligation: innermost derivational complexity wrt. signature {app,cons,from,nil,prefix,zWadr} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = NoUArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind triangular matrix interpretation: Following symbols are considered usable: all TcT has computed the following interpretation: p(app) = [1] x1 + [1] x2 + [10] p(cons) = [1] x1 + [0] p(from) = [1] x1 + [0] p(nil) = [0] p(prefix) = [1] x1 + [0] p(zWadr) = [1] x1 + [1] x2 + [11] Following rules are strictly oriented: app(cons(X),YS) = [1] X + [1] YS + [10] > [1] X + [0] = cons(X) app(nil(),YS) = [1] YS + [10] > [1] YS + [0] = YS zWadr(XS,nil()) = [1] XS + [11] > [0] = nil() zWadr(cons(X),cons(Y)) = [1] X + [1] Y + [11] > [1] X + [1] Y + [10] = cons(app(Y,cons(X))) zWadr(nil(),YS) = [1] YS + [11] > [0] = nil() Following rules are (at-least) weakly oriented: from(X) = [1] X + [0] >= [1] X + [0] = cons(X) prefix(L) = [1] L + [0] >= [0] = cons(nil()) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 2: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: from(X) -> cons(X) prefix(L) -> cons(nil()) - Weak TRS: app(cons(X),YS) -> cons(X) app(nil(),YS) -> YS zWadr(XS,nil()) -> nil() zWadr(cons(X),cons(Y)) -> cons(app(Y,cons(X))) zWadr(nil(),YS) -> nil() - Signature: {app/2,from/1,prefix/1,zWadr/2} / {cons/1,nil/0} - Obligation: innermost derivational complexity wrt. signature {app,cons,from,nil,prefix,zWadr} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = NoUArgs, urules = NoURules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind triangular matrix interpretation: Following symbols are considered usable: all TcT has computed the following interpretation: p(app) = [1] x1 + [1] x2 + [0] p(cons) = [1] x1 + [0] p(from) = [1] x1 + [8] p(nil) = [0] p(prefix) = [1] x1 + [0] p(zWadr) = [1] x1 + [1] x2 + [0] Following rules are strictly oriented: from(X) = [1] X + [8] > [1] X + [0] = cons(X) Following rules are (at-least) weakly oriented: app(cons(X),YS) = [1] X + [1] YS + [0] >= [1] X + [0] = cons(X) app(nil(),YS) = [1] YS + [0] >= [1] YS + [0] = YS prefix(L) = [1] L + [0] >= [0] = cons(nil()) zWadr(XS,nil()) = [1] XS + [0] >= [0] = nil() zWadr(cons(X),cons(Y)) = [1] X + [1] Y + [0] >= [1] X + [1] Y + [0] = cons(app(Y,cons(X))) zWadr(nil(),YS) = [1] YS + [0] >= [0] = nil() * Step 3: WeightGap. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: prefix(L) -> cons(nil()) - Weak TRS: app(cons(X),YS) -> cons(X) app(nil(),YS) -> YS from(X) -> cons(X) zWadr(XS,nil()) -> nil() zWadr(cons(X),cons(Y)) -> cons(app(Y,cons(X))) zWadr(nil(),YS) -> nil() - Signature: {app/2,from/1,prefix/1,zWadr/2} / {cons/1,nil/0} - Obligation: innermost derivational complexity wrt. signature {app,cons,from,nil,prefix,zWadr} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = NoUArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind triangular matrix interpretation: Following symbols are considered usable: all TcT has computed the following interpretation: p(app) = [1] x1 + [1] x2 + [0] p(cons) = [1] x1 + [5] p(from) = [1] x1 + [5] p(nil) = [2] p(prefix) = [1] x1 + [9] p(zWadr) = [1] x1 + [1] x2 + [2] Following rules are strictly oriented: prefix(L) = [1] L + [9] > [7] = cons(nil()) Following rules are (at-least) weakly oriented: app(cons(X),YS) = [1] X + [1] YS + [5] >= [1] X + [5] = cons(X) app(nil(),YS) = [1] YS + [2] >= [1] YS + [0] = YS from(X) = [1] X + [5] >= [1] X + [5] = cons(X) zWadr(XS,nil()) = [1] XS + [4] >= [2] = nil() zWadr(cons(X),cons(Y)) = [1] X + [1] Y + [12] >= [1] X + [1] Y + [10] = cons(app(Y,cons(X))) zWadr(nil(),YS) = [1] YS + [4] >= [2] = nil() Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 4: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: app(cons(X),YS) -> cons(X) app(nil(),YS) -> YS from(X) -> cons(X) prefix(L) -> cons(nil()) zWadr(XS,nil()) -> nil() zWadr(cons(X),cons(Y)) -> cons(app(Y,cons(X))) zWadr(nil(),YS) -> nil() - Signature: {app/2,from/1,prefix/1,zWadr/2} / {cons/1,nil/0} - Obligation: innermost derivational complexity wrt. signature {app,cons,from,nil,prefix,zWadr} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))