/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 313 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__eq(0, 0) -> true a__eq(s(X), s(Y)) -> a__eq(X, Y) a__eq(X, Y) -> false a__inf(X) -> cons(X, inf(s(X))) a__take(0, X) -> nil a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L)) a__length(nil) -> 0 a__length(cons(X, L)) -> s(length(L)) mark(eq(X1, X2)) -> a__eq(X1, X2) mark(inf(X)) -> a__inf(mark(X)) mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(length(X)) -> a__length(mark(X)) mark(0) -> 0 mark(true) -> true mark(s(X)) -> s(X) mark(false) -> false mark(cons(X1, X2)) -> cons(X1, X2) mark(nil) -> nil a__eq(X1, X2) -> eq(X1, X2) a__inf(X) -> inf(X) a__take(X1, X2) -> take(X1, X2) a__length(X) -> length(X) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(inf(x_1)) -> inf(encArg(x_1)) encArg(nil) -> nil encArg(take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(length(x_1)) -> length(encArg(x_1)) encArg(eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_a__eq(x_1, x_2)) -> a__eq(encArg(x_1), encArg(x_2)) encArg(cons_a__inf(x_1)) -> a__inf(encArg(x_1)) encArg(cons_a__take(x_1, x_2)) -> a__take(encArg(x_1), encArg(x_2)) encArg(cons_a__length(x_1)) -> a__length(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__eq(x_1, x_2) -> a__eq(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_a__inf(x_1) -> a__inf(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_inf(x_1) -> inf(encArg(x_1)) encode_a__take(x_1, x_2) -> a__take(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_a__length(x_1) -> a__length(encArg(x_1)) encode_length(x_1) -> length(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__eq(0, 0) -> true a__eq(s(X), s(Y)) -> a__eq(X, Y) a__eq(X, Y) -> false a__inf(X) -> cons(X, inf(s(X))) a__take(0, X) -> nil a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L)) a__length(nil) -> 0 a__length(cons(X, L)) -> s(length(L)) mark(eq(X1, X2)) -> a__eq(X1, X2) mark(inf(X)) -> a__inf(mark(X)) mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(length(X)) -> a__length(mark(X)) mark(0) -> 0 mark(true) -> true mark(s(X)) -> s(X) mark(false) -> false mark(cons(X1, X2)) -> cons(X1, X2) mark(nil) -> nil a__eq(X1, X2) -> eq(X1, X2) a__inf(X) -> inf(X) a__take(X1, X2) -> take(X1, X2) a__length(X) -> length(X) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(inf(x_1)) -> inf(encArg(x_1)) encArg(nil) -> nil encArg(take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(length(x_1)) -> length(encArg(x_1)) encArg(eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_a__eq(x_1, x_2)) -> a__eq(encArg(x_1), encArg(x_2)) encArg(cons_a__inf(x_1)) -> a__inf(encArg(x_1)) encArg(cons_a__take(x_1, x_2)) -> a__take(encArg(x_1), encArg(x_2)) encArg(cons_a__length(x_1)) -> a__length(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__eq(x_1, x_2) -> a__eq(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_a__inf(x_1) -> a__inf(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_inf(x_1) -> inf(encArg(x_1)) encode_a__take(x_1, x_2) -> a__take(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_a__length(x_1) -> a__length(encArg(x_1)) encode_length(x_1) -> length(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__eq(0, 0) -> true a__eq(s(X), s(Y)) -> a__eq(X, Y) a__eq(X, Y) -> false a__inf(X) -> cons(X, inf(s(X))) a__take(0, X) -> nil a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L)) a__length(nil) -> 0 a__length(cons(X, L)) -> s(length(L)) mark(eq(X1, X2)) -> a__eq(X1, X2) mark(inf(X)) -> a__inf(mark(X)) mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(length(X)) -> a__length(mark(X)) mark(0) -> 0 mark(true) -> true mark(s(X)) -> s(X) mark(false) -> false mark(cons(X1, X2)) -> cons(X1, X2) mark(nil) -> nil a__eq(X1, X2) -> eq(X1, X2) a__inf(X) -> inf(X) a__take(X1, X2) -> take(X1, X2) a__length(X) -> length(X) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(inf(x_1)) -> inf(encArg(x_1)) encArg(nil) -> nil encArg(take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(length(x_1)) -> length(encArg(x_1)) encArg(eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_a__eq(x_1, x_2)) -> a__eq(encArg(x_1), encArg(x_2)) encArg(cons_a__inf(x_1)) -> a__inf(encArg(x_1)) encArg(cons_a__take(x_1, x_2)) -> a__take(encArg(x_1), encArg(x_2)) encArg(cons_a__length(x_1)) -> a__length(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__eq(x_1, x_2) -> a__eq(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_a__inf(x_1) -> a__inf(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_inf(x_1) -> inf(encArg(x_1)) encode_a__take(x_1, x_2) -> a__take(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_a__length(x_1) -> a__length(encArg(x_1)) encode_length(x_1) -> length(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__eq(0, 0) -> true a__eq(s(X), s(Y)) -> a__eq(X, Y) a__eq(X, Y) -> false a__inf(X) -> cons(X, inf(s(X))) a__take(0, X) -> nil a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L)) a__length(nil) -> 0 a__length(cons(X, L)) -> s(length(L)) mark(eq(X1, X2)) -> a__eq(X1, X2) mark(inf(X)) -> a__inf(mark(X)) mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(length(X)) -> a__length(mark(X)) mark(0) -> 0 mark(true) -> true mark(s(X)) -> s(X) mark(false) -> false mark(cons(X1, X2)) -> cons(X1, X2) mark(nil) -> nil a__eq(X1, X2) -> eq(X1, X2) a__inf(X) -> inf(X) a__take(X1, X2) -> take(X1, X2) a__length(X) -> length(X) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(inf(x_1)) -> inf(encArg(x_1)) encArg(nil) -> nil encArg(take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(length(x_1)) -> length(encArg(x_1)) encArg(eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_a__eq(x_1, x_2)) -> a__eq(encArg(x_1), encArg(x_2)) encArg(cons_a__inf(x_1)) -> a__inf(encArg(x_1)) encArg(cons_a__take(x_1, x_2)) -> a__take(encArg(x_1), encArg(x_2)) encArg(cons_a__length(x_1)) -> a__length(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__eq(x_1, x_2) -> a__eq(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_a__inf(x_1) -> a__inf(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_inf(x_1) -> inf(encArg(x_1)) encode_a__take(x_1, x_2) -> a__take(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_a__length(x_1) -> a__length(encArg(x_1)) encode_length(x_1) -> length(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence mark(length(X)) ->^+ a__length(mark(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / length(X)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__eq(0, 0) -> true a__eq(s(X), s(Y)) -> a__eq(X, Y) a__eq(X, Y) -> false a__inf(X) -> cons(X, inf(s(X))) a__take(0, X) -> nil a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L)) a__length(nil) -> 0 a__length(cons(X, L)) -> s(length(L)) mark(eq(X1, X2)) -> a__eq(X1, X2) mark(inf(X)) -> a__inf(mark(X)) mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(length(X)) -> a__length(mark(X)) mark(0) -> 0 mark(true) -> true mark(s(X)) -> s(X) mark(false) -> false mark(cons(X1, X2)) -> cons(X1, X2) mark(nil) -> nil a__eq(X1, X2) -> eq(X1, X2) a__inf(X) -> inf(X) a__take(X1, X2) -> take(X1, X2) a__length(X) -> length(X) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(inf(x_1)) -> inf(encArg(x_1)) encArg(nil) -> nil encArg(take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(length(x_1)) -> length(encArg(x_1)) encArg(eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_a__eq(x_1, x_2)) -> a__eq(encArg(x_1), encArg(x_2)) encArg(cons_a__inf(x_1)) -> a__inf(encArg(x_1)) encArg(cons_a__take(x_1, x_2)) -> a__take(encArg(x_1), encArg(x_2)) encArg(cons_a__length(x_1)) -> a__length(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__eq(x_1, x_2) -> a__eq(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_a__inf(x_1) -> a__inf(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_inf(x_1) -> inf(encArg(x_1)) encode_a__take(x_1, x_2) -> a__take(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_a__length(x_1) -> a__length(encArg(x_1)) encode_length(x_1) -> length(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__eq(0, 0) -> true a__eq(s(X), s(Y)) -> a__eq(X, Y) a__eq(X, Y) -> false a__inf(X) -> cons(X, inf(s(X))) a__take(0, X) -> nil a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L)) a__length(nil) -> 0 a__length(cons(X, L)) -> s(length(L)) mark(eq(X1, X2)) -> a__eq(X1, X2) mark(inf(X)) -> a__inf(mark(X)) mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(length(X)) -> a__length(mark(X)) mark(0) -> 0 mark(true) -> true mark(s(X)) -> s(X) mark(false) -> false mark(cons(X1, X2)) -> cons(X1, X2) mark(nil) -> nil a__eq(X1, X2) -> eq(X1, X2) a__inf(X) -> inf(X) a__take(X1, X2) -> take(X1, X2) a__length(X) -> length(X) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(inf(x_1)) -> inf(encArg(x_1)) encArg(nil) -> nil encArg(take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(length(x_1)) -> length(encArg(x_1)) encArg(eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_a__eq(x_1, x_2)) -> a__eq(encArg(x_1), encArg(x_2)) encArg(cons_a__inf(x_1)) -> a__inf(encArg(x_1)) encArg(cons_a__take(x_1, x_2)) -> a__take(encArg(x_1), encArg(x_2)) encArg(cons_a__length(x_1)) -> a__length(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__eq(x_1, x_2) -> a__eq(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_a__inf(x_1) -> a__inf(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_inf(x_1) -> inf(encArg(x_1)) encode_a__take(x_1, x_2) -> a__take(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_a__length(x_1) -> a__length(encArg(x_1)) encode_length(x_1) -> length(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST