/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 313 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 4 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__incr(nil) -> nil a__incr(cons(X, L)) -> cons(s(mark(X)), incr(L)) a__adx(nil) -> nil a__adx(cons(X, L)) -> a__incr(cons(mark(X), adx(L))) a__nats -> a__adx(a__zeros) a__zeros -> cons(0, zeros) a__head(cons(X, L)) -> mark(X) a__tail(cons(X, L)) -> mark(L) mark(incr(X)) -> a__incr(mark(X)) mark(adx(X)) -> a__adx(mark(X)) mark(nats) -> a__nats mark(zeros) -> a__zeros mark(head(X)) -> a__head(mark(X)) mark(tail(X)) -> a__tail(mark(X)) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__incr(X) -> incr(X) a__adx(X) -> adx(X) a__nats -> nats a__zeros -> zeros a__head(X) -> head(X) a__tail(X) -> tail(X) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(incr(x_1)) -> incr(encArg(x_1)) encArg(adx(x_1)) -> adx(encArg(x_1)) encArg(0) -> 0 encArg(zeros) -> zeros encArg(nats) -> nats encArg(head(x_1)) -> head(encArg(x_1)) encArg(tail(x_1)) -> tail(encArg(x_1)) encArg(cons_a__incr(x_1)) -> a__incr(encArg(x_1)) encArg(cons_a__adx(x_1)) -> a__adx(encArg(x_1)) encArg(cons_a__nats) -> a__nats encArg(cons_a__zeros) -> a__zeros encArg(cons_a__head(x_1)) -> a__head(encArg(x_1)) encArg(cons_a__tail(x_1)) -> a__tail(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__incr(x_1) -> a__incr(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_incr(x_1) -> incr(encArg(x_1)) encode_a__adx(x_1) -> a__adx(encArg(x_1)) encode_adx(x_1) -> adx(encArg(x_1)) encode_a__nats -> a__nats encode_a__zeros -> a__zeros encode_0 -> 0 encode_zeros -> zeros encode_a__head(x_1) -> a__head(encArg(x_1)) encode_a__tail(x_1) -> a__tail(encArg(x_1)) encode_nats -> nats encode_head(x_1) -> head(encArg(x_1)) encode_tail(x_1) -> tail(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__incr(nil) -> nil a__incr(cons(X, L)) -> cons(s(mark(X)), incr(L)) a__adx(nil) -> nil a__adx(cons(X, L)) -> a__incr(cons(mark(X), adx(L))) a__nats -> a__adx(a__zeros) a__zeros -> cons(0, zeros) a__head(cons(X, L)) -> mark(X) a__tail(cons(X, L)) -> mark(L) mark(incr(X)) -> a__incr(mark(X)) mark(adx(X)) -> a__adx(mark(X)) mark(nats) -> a__nats mark(zeros) -> a__zeros mark(head(X)) -> a__head(mark(X)) mark(tail(X)) -> a__tail(mark(X)) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__incr(X) -> incr(X) a__adx(X) -> adx(X) a__nats -> nats a__zeros -> zeros a__head(X) -> head(X) a__tail(X) -> tail(X) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(incr(x_1)) -> incr(encArg(x_1)) encArg(adx(x_1)) -> adx(encArg(x_1)) encArg(0) -> 0 encArg(zeros) -> zeros encArg(nats) -> nats encArg(head(x_1)) -> head(encArg(x_1)) encArg(tail(x_1)) -> tail(encArg(x_1)) encArg(cons_a__incr(x_1)) -> a__incr(encArg(x_1)) encArg(cons_a__adx(x_1)) -> a__adx(encArg(x_1)) encArg(cons_a__nats) -> a__nats encArg(cons_a__zeros) -> a__zeros encArg(cons_a__head(x_1)) -> a__head(encArg(x_1)) encArg(cons_a__tail(x_1)) -> a__tail(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__incr(x_1) -> a__incr(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_incr(x_1) -> incr(encArg(x_1)) encode_a__adx(x_1) -> a__adx(encArg(x_1)) encode_adx(x_1) -> adx(encArg(x_1)) encode_a__nats -> a__nats encode_a__zeros -> a__zeros encode_0 -> 0 encode_zeros -> zeros encode_a__head(x_1) -> a__head(encArg(x_1)) encode_a__tail(x_1) -> a__tail(encArg(x_1)) encode_nats -> nats encode_head(x_1) -> head(encArg(x_1)) encode_tail(x_1) -> tail(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__incr(nil) -> nil a__incr(cons(X, L)) -> cons(s(mark(X)), incr(L)) a__adx(nil) -> nil a__adx(cons(X, L)) -> a__incr(cons(mark(X), adx(L))) a__nats -> a__adx(a__zeros) a__zeros -> cons(0, zeros) a__head(cons(X, L)) -> mark(X) a__tail(cons(X, L)) -> mark(L) mark(incr(X)) -> a__incr(mark(X)) mark(adx(X)) -> a__adx(mark(X)) mark(nats) -> a__nats mark(zeros) -> a__zeros mark(head(X)) -> a__head(mark(X)) mark(tail(X)) -> a__tail(mark(X)) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__incr(X) -> incr(X) a__adx(X) -> adx(X) a__nats -> nats a__zeros -> zeros a__head(X) -> head(X) a__tail(X) -> tail(X) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(incr(x_1)) -> incr(encArg(x_1)) encArg(adx(x_1)) -> adx(encArg(x_1)) encArg(0) -> 0 encArg(zeros) -> zeros encArg(nats) -> nats encArg(head(x_1)) -> head(encArg(x_1)) encArg(tail(x_1)) -> tail(encArg(x_1)) encArg(cons_a__incr(x_1)) -> a__incr(encArg(x_1)) encArg(cons_a__adx(x_1)) -> a__adx(encArg(x_1)) encArg(cons_a__nats) -> a__nats encArg(cons_a__zeros) -> a__zeros encArg(cons_a__head(x_1)) -> a__head(encArg(x_1)) encArg(cons_a__tail(x_1)) -> a__tail(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__incr(x_1) -> a__incr(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_incr(x_1) -> incr(encArg(x_1)) encode_a__adx(x_1) -> a__adx(encArg(x_1)) encode_adx(x_1) -> adx(encArg(x_1)) encode_a__nats -> a__nats encode_a__zeros -> a__zeros encode_0 -> 0 encode_zeros -> zeros encode_a__head(x_1) -> a__head(encArg(x_1)) encode_a__tail(x_1) -> a__tail(encArg(x_1)) encode_nats -> nats encode_head(x_1) -> head(encArg(x_1)) encode_tail(x_1) -> tail(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__incr(nil) -> nil a__incr(cons(X, L)) -> cons(s(mark(X)), incr(L)) a__adx(nil) -> nil a__adx(cons(X, L)) -> a__incr(cons(mark(X), adx(L))) a__nats -> a__adx(a__zeros) a__zeros -> cons(0, zeros) a__head(cons(X, L)) -> mark(X) a__tail(cons(X, L)) -> mark(L) mark(incr(X)) -> a__incr(mark(X)) mark(adx(X)) -> a__adx(mark(X)) mark(nats) -> a__nats mark(zeros) -> a__zeros mark(head(X)) -> a__head(mark(X)) mark(tail(X)) -> a__tail(mark(X)) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__incr(X) -> incr(X) a__adx(X) -> adx(X) a__nats -> nats a__zeros -> zeros a__head(X) -> head(X) a__tail(X) -> tail(X) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(incr(x_1)) -> incr(encArg(x_1)) encArg(adx(x_1)) -> adx(encArg(x_1)) encArg(0) -> 0 encArg(zeros) -> zeros encArg(nats) -> nats encArg(head(x_1)) -> head(encArg(x_1)) encArg(tail(x_1)) -> tail(encArg(x_1)) encArg(cons_a__incr(x_1)) -> a__incr(encArg(x_1)) encArg(cons_a__adx(x_1)) -> a__adx(encArg(x_1)) encArg(cons_a__nats) -> a__nats encArg(cons_a__zeros) -> a__zeros encArg(cons_a__head(x_1)) -> a__head(encArg(x_1)) encArg(cons_a__tail(x_1)) -> a__tail(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__incr(x_1) -> a__incr(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_incr(x_1) -> incr(encArg(x_1)) encode_a__adx(x_1) -> a__adx(encArg(x_1)) encode_adx(x_1) -> adx(encArg(x_1)) encode_a__nats -> a__nats encode_a__zeros -> a__zeros encode_0 -> 0 encode_zeros -> zeros encode_a__head(x_1) -> a__head(encArg(x_1)) encode_a__tail(x_1) -> a__tail(encArg(x_1)) encode_nats -> nats encode_head(x_1) -> head(encArg(x_1)) encode_tail(x_1) -> tail(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence mark(incr(X)) ->^+ a__incr(mark(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / incr(X)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__incr(nil) -> nil a__incr(cons(X, L)) -> cons(s(mark(X)), incr(L)) a__adx(nil) -> nil a__adx(cons(X, L)) -> a__incr(cons(mark(X), adx(L))) a__nats -> a__adx(a__zeros) a__zeros -> cons(0, zeros) a__head(cons(X, L)) -> mark(X) a__tail(cons(X, L)) -> mark(L) mark(incr(X)) -> a__incr(mark(X)) mark(adx(X)) -> a__adx(mark(X)) mark(nats) -> a__nats mark(zeros) -> a__zeros mark(head(X)) -> a__head(mark(X)) mark(tail(X)) -> a__tail(mark(X)) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__incr(X) -> incr(X) a__adx(X) -> adx(X) a__nats -> nats a__zeros -> zeros a__head(X) -> head(X) a__tail(X) -> tail(X) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(incr(x_1)) -> incr(encArg(x_1)) encArg(adx(x_1)) -> adx(encArg(x_1)) encArg(0) -> 0 encArg(zeros) -> zeros encArg(nats) -> nats encArg(head(x_1)) -> head(encArg(x_1)) encArg(tail(x_1)) -> tail(encArg(x_1)) encArg(cons_a__incr(x_1)) -> a__incr(encArg(x_1)) encArg(cons_a__adx(x_1)) -> a__adx(encArg(x_1)) encArg(cons_a__nats) -> a__nats encArg(cons_a__zeros) -> a__zeros encArg(cons_a__head(x_1)) -> a__head(encArg(x_1)) encArg(cons_a__tail(x_1)) -> a__tail(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__incr(x_1) -> a__incr(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_incr(x_1) -> incr(encArg(x_1)) encode_a__adx(x_1) -> a__adx(encArg(x_1)) encode_adx(x_1) -> adx(encArg(x_1)) encode_a__nats -> a__nats encode_a__zeros -> a__zeros encode_0 -> 0 encode_zeros -> zeros encode_a__head(x_1) -> a__head(encArg(x_1)) encode_a__tail(x_1) -> a__tail(encArg(x_1)) encode_nats -> nats encode_head(x_1) -> head(encArg(x_1)) encode_tail(x_1) -> tail(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__incr(nil) -> nil a__incr(cons(X, L)) -> cons(s(mark(X)), incr(L)) a__adx(nil) -> nil a__adx(cons(X, L)) -> a__incr(cons(mark(X), adx(L))) a__nats -> a__adx(a__zeros) a__zeros -> cons(0, zeros) a__head(cons(X, L)) -> mark(X) a__tail(cons(X, L)) -> mark(L) mark(incr(X)) -> a__incr(mark(X)) mark(adx(X)) -> a__adx(mark(X)) mark(nats) -> a__nats mark(zeros) -> a__zeros mark(head(X)) -> a__head(mark(X)) mark(tail(X)) -> a__tail(mark(X)) mark(nil) -> nil mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) mark(0) -> 0 a__incr(X) -> incr(X) a__adx(X) -> adx(X) a__nats -> nats a__zeros -> zeros a__head(X) -> head(X) a__tail(X) -> tail(X) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(incr(x_1)) -> incr(encArg(x_1)) encArg(adx(x_1)) -> adx(encArg(x_1)) encArg(0) -> 0 encArg(zeros) -> zeros encArg(nats) -> nats encArg(head(x_1)) -> head(encArg(x_1)) encArg(tail(x_1)) -> tail(encArg(x_1)) encArg(cons_a__incr(x_1)) -> a__incr(encArg(x_1)) encArg(cons_a__adx(x_1)) -> a__adx(encArg(x_1)) encArg(cons_a__nats) -> a__nats encArg(cons_a__zeros) -> a__zeros encArg(cons_a__head(x_1)) -> a__head(encArg(x_1)) encArg(cons_a__tail(x_1)) -> a__tail(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__incr(x_1) -> a__incr(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_incr(x_1) -> incr(encArg(x_1)) encode_a__adx(x_1) -> a__adx(encArg(x_1)) encode_adx(x_1) -> adx(encArg(x_1)) encode_a__nats -> a__nats encode_a__zeros -> a__zeros encode_0 -> 0 encode_zeros -> zeros encode_a__head(x_1) -> a__head(encArg(x_1)) encode_a__tail(x_1) -> a__tail(encArg(x_1)) encode_nats -> nats encode_head(x_1) -> head(encArg(x_1)) encode_tail(x_1) -> tail(encArg(x_1)) Rewrite Strategy: INNERMOST