/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 68 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (12) CdtProblem (13) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 106 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 23 ms] (18) CdtProblem (19) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 74 ms] (20) CdtProblem (21) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 85 ms] (22) CdtProblem (23) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 53 ms] (24) CdtProblem (25) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (26) BOUNDS(1, 1) (27) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (28) TRS for Loop Detection (29) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (30) BEST (31) proven lower bound (32) LowerBoundPropagationProof [FINISHED, 0 ms] (33) BOUNDS(n^1, INF) (34) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(f(a)) -> c(n__f(n__g(n__f(n__a)))) f(X) -> n__f(X) g(X) -> n__g(X) a -> n__a activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(activate(X)) activate(n__a) -> a activate(X) -> X S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(c(x_1)) -> c(encArg(x_1)) encArg(n__f(x_1)) -> n__f(encArg(x_1)) encArg(n__g(x_1)) -> n__g(encArg(x_1)) encArg(n__a) -> n__a encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_a) -> a encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_c(x_1) -> c(encArg(x_1)) encode_n__f(x_1) -> n__f(encArg(x_1)) encode_n__g(x_1) -> n__g(encArg(x_1)) encode_n__a -> n__a encode_g(x_1) -> g(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(f(a)) -> c(n__f(n__g(n__f(n__a)))) f(X) -> n__f(X) g(X) -> n__g(X) a -> n__a activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(activate(X)) activate(n__a) -> a activate(X) -> X The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(n__f(x_1)) -> n__f(encArg(x_1)) encArg(n__g(x_1)) -> n__g(encArg(x_1)) encArg(n__a) -> n__a encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_a) -> a encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_c(x_1) -> c(encArg(x_1)) encode_n__f(x_1) -> n__f(encArg(x_1)) encode_n__g(x_1) -> n__g(encArg(x_1)) encode_n__a -> n__a encode_g(x_1) -> g(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(f(a)) -> c(n__f(n__g(n__f(n__a)))) f(X) -> n__f(X) g(X) -> n__g(X) a -> n__a activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(activate(X)) activate(n__a) -> a activate(X) -> X The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(n__f(x_1)) -> n__f(encArg(x_1)) encArg(n__g(x_1)) -> n__g(encArg(x_1)) encArg(n__a) -> n__a encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_a) -> a encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_c(x_1) -> c(encArg(x_1)) encode_n__f(x_1) -> n__f(encArg(x_1)) encode_n__g(x_1) -> n__g(encArg(x_1)) encode_n__a -> n__a encode_g(x_1) -> g(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_c(z0) -> c(encArg(z0)) encode_n__f(z0) -> n__f(encArg(z0)) encode_n__g(z0) -> n__g(encArg(z0)) encode_n__a -> n__a encode_g(z0) -> g(encArg(z0)) encode_activate(z0) -> activate(encArg(z0)) f(f(a)) -> c(n__f(n__g(n__f(n__a)))) f(z0) -> n__f(z0) g(z0) -> n__g(z0) a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__g(z0)) -> g(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(n__a) -> c4 ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) ENCODE_F(z0) -> c9(F(encArg(z0)), ENCARG(z0)) ENCODE_A -> c10(A) ENCODE_C(z0) -> c11(ENCARG(z0)) ENCODE_N__F(z0) -> c12(ENCARG(z0)) ENCODE_N__G(z0) -> c13(ENCARG(z0)) ENCODE_N__A -> c14 ENCODE_G(z0) -> c15(G(encArg(z0)), ENCARG(z0)) ENCODE_ACTIVATE(z0) -> c16(ACTIVATE(encArg(z0)), ENCARG(z0)) F(f(a)) -> c17 F(z0) -> c18 G(z0) -> c19 A -> c20 ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c23(A) ACTIVATE(z0) -> c24 S tuples: F(f(a)) -> c17 F(z0) -> c18 G(z0) -> c19 A -> c20 ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c23(A) ACTIVATE(z0) -> c24 K tuples:none Defined Rule Symbols: f_1, g_1, a, activate_1, encArg_1, encode_f_1, encode_a, encode_c_1, encode_n__f_1, encode_n__g_1, encode_n__a, encode_g_1, encode_activate_1 Defined Pair Symbols: ENCARG_1, ENCODE_F_1, ENCODE_A, ENCODE_C_1, ENCODE_N__F_1, ENCODE_N__G_1, ENCODE_N__A, ENCODE_G_1, ENCODE_ACTIVATE_1, F_1, G_1, A, ACTIVATE_1 Compound Symbols: c1_1, c2_1, c3_1, c4, c5_2, c6_2, c7_1, c8_2, c9_2, c10_1, c11_1, c12_1, c13_1, c14, c15_2, c16_2, c17, c18, c19, c20, c21_2, c22_2, c23_1, c24 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 4 leading nodes: ENCODE_C(z0) -> c11(ENCARG(z0)) ENCODE_N__F(z0) -> c12(ENCARG(z0)) ENCODE_N__G(z0) -> c13(ENCARG(z0)) ENCODE_A -> c10(A) Removed 3 trailing nodes: F(f(a)) -> c17 ENCARG(n__a) -> c4 ENCODE_N__A -> c14 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_c(z0) -> c(encArg(z0)) encode_n__f(z0) -> n__f(encArg(z0)) encode_n__g(z0) -> n__g(encArg(z0)) encode_n__a -> n__a encode_g(z0) -> g(encArg(z0)) encode_activate(z0) -> activate(encArg(z0)) f(f(a)) -> c(n__f(n__g(n__f(n__a)))) f(z0) -> n__f(z0) g(z0) -> n__g(z0) a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__g(z0)) -> g(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) ENCODE_F(z0) -> c9(F(encArg(z0)), ENCARG(z0)) ENCODE_G(z0) -> c15(G(encArg(z0)), ENCARG(z0)) ENCODE_ACTIVATE(z0) -> c16(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 G(z0) -> c19 A -> c20 ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c23(A) ACTIVATE(z0) -> c24 S tuples: F(z0) -> c18 G(z0) -> c19 A -> c20 ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c23(A) ACTIVATE(z0) -> c24 K tuples:none Defined Rule Symbols: f_1, g_1, a, activate_1, encArg_1, encode_f_1, encode_a, encode_c_1, encode_n__f_1, encode_n__g_1, encode_n__a, encode_g_1, encode_activate_1 Defined Pair Symbols: ENCARG_1, ENCODE_F_1, ENCODE_G_1, ENCODE_ACTIVATE_1, F_1, G_1, A, ACTIVATE_1 Compound Symbols: c1_1, c2_1, c3_1, c5_2, c6_2, c7_1, c8_2, c9_2, c15_2, c16_2, c18, c19, c20, c21_2, c22_2, c23_1, c24 ---------------------------------------- (9) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_c(z0) -> c(encArg(z0)) encode_n__f(z0) -> n__f(encArg(z0)) encode_n__g(z0) -> n__g(encArg(z0)) encode_n__a -> n__a encode_g(z0) -> g(encArg(z0)) encode_activate(z0) -> activate(encArg(z0)) f(f(a)) -> c(n__f(n__g(n__f(n__a)))) f(z0) -> n__f(z0) g(z0) -> n__g(z0) a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__g(z0)) -> g(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 G(z0) -> c19 A -> c20 ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c23(A) ACTIVATE(z0) -> c24 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_F(z0) -> c4(ENCARG(z0)) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_G(z0) -> c4(ENCARG(z0)) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ENCARG(z0)) S tuples: F(z0) -> c18 G(z0) -> c19 A -> c20 ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c23(A) ACTIVATE(z0) -> c24 K tuples:none Defined Rule Symbols: f_1, g_1, a, activate_1, encArg_1, encode_f_1, encode_a, encode_c_1, encode_n__f_1, encode_n__g_1, encode_n__a, encode_g_1, encode_activate_1 Defined Pair Symbols: ENCARG_1, F_1, G_1, A, ACTIVATE_1, ENCODE_F_1, ENCODE_G_1, ENCODE_ACTIVATE_1 Compound Symbols: c1_1, c2_1, c3_1, c5_2, c6_2, c7_1, c8_2, c18, c19, c20, c21_2, c22_2, c23_1, c24, c4_1 ---------------------------------------- (11) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 3 leading nodes: ENCODE_F(z0) -> c4(ENCARG(z0)) ENCODE_G(z0) -> c4(ENCARG(z0)) ENCODE_ACTIVATE(z0) -> c4(ENCARG(z0)) ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_c(z0) -> c(encArg(z0)) encode_n__f(z0) -> n__f(encArg(z0)) encode_n__g(z0) -> n__g(encArg(z0)) encode_n__a -> n__a encode_g(z0) -> g(encArg(z0)) encode_activate(z0) -> activate(encArg(z0)) f(f(a)) -> c(n__f(n__g(n__f(n__a)))) f(z0) -> n__f(z0) g(z0) -> n__g(z0) a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__g(z0)) -> g(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 G(z0) -> c19 A -> c20 ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c23(A) ACTIVATE(z0) -> c24 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) S tuples: F(z0) -> c18 G(z0) -> c19 A -> c20 ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c23(A) ACTIVATE(z0) -> c24 K tuples:none Defined Rule Symbols: f_1, g_1, a, activate_1, encArg_1, encode_f_1, encode_a, encode_c_1, encode_n__f_1, encode_n__g_1, encode_n__a, encode_g_1, encode_activate_1 Defined Pair Symbols: ENCARG_1, F_1, G_1, A, ACTIVATE_1, ENCODE_F_1, ENCODE_G_1, ENCODE_ACTIVATE_1 Compound Symbols: c1_1, c2_1, c3_1, c5_2, c6_2, c7_1, c8_2, c18, c19, c20, c21_2, c22_2, c23_1, c24, c4_1 ---------------------------------------- (13) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_c(z0) -> c(encArg(z0)) encode_n__f(z0) -> n__f(encArg(z0)) encode_n__g(z0) -> n__g(encArg(z0)) encode_n__a -> n__a encode_g(z0) -> g(encArg(z0)) encode_activate(z0) -> activate(encArg(z0)) f(f(a)) -> c(n__f(n__g(n__f(n__a)))) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) f(z0) -> n__f(z0) g(z0) -> n__g(z0) a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__g(z0)) -> g(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 G(z0) -> c19 A -> c20 ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c23(A) ACTIVATE(z0) -> c24 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) S tuples: F(z0) -> c18 G(z0) -> c19 A -> c20 ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c23(A) ACTIVATE(z0) -> c24 K tuples:none Defined Rule Symbols: encArg_1, f_1, g_1, a, activate_1 Defined Pair Symbols: ENCARG_1, F_1, G_1, A, ACTIVATE_1, ENCODE_F_1, ENCODE_G_1, ENCODE_ACTIVATE_1 Compound Symbols: c1_1, c2_1, c3_1, c5_2, c6_2, c7_1, c8_2, c18, c19, c20, c21_2, c22_2, c23_1, c24, c4_1 ---------------------------------------- (15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. A -> c20 ACTIVATE(z0) -> c24 We considered the (Usable) Rules: encArg(n__a) -> n__a encArg(cons_a) -> a g(z0) -> n__g(z0) activate(n__g(z0)) -> g(activate(z0)) f(z0) -> n__f(z0) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) activate(z0) -> z0 encArg(c(z0)) -> c(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) activate(n__a) -> a activate(n__f(z0)) -> f(activate(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) a -> n__a And the Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 G(z0) -> c19 A -> c20 ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c23(A) ACTIVATE(z0) -> c24 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A) = [1] POL(ACTIVATE(x_1)) = [1] + x_1 POL(ENCARG(x_1)) = x_1 POL(ENCODE_ACTIVATE(x_1)) = [1] POL(ENCODE_F(x_1)) = 0 POL(ENCODE_G(x_1)) = x_1 POL(F(x_1)) = 0 POL(G(x_1)) = 0 POL(a) = 0 POL(activate(x_1)) = x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c18) = 0 POL(c19) = 0 POL(c2(x_1)) = x_1 POL(c20) = 0 POL(c21(x_1, x_2)) = x_1 + x_2 POL(c22(x_1, x_2)) = x_1 + x_2 POL(c23(x_1)) = x_1 POL(c24) = 0 POL(c3(x_1)) = x_1 POL(c4(x_1)) = x_1 POL(c5(x_1, x_2)) = x_1 + x_2 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c7(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(cons_a) = [1] POL(cons_activate(x_1)) = [1] + x_1 POL(cons_f(x_1)) = [1] + x_1 POL(cons_g(x_1)) = [1] + x_1 POL(encArg(x_1)) = 0 POL(f(x_1)) = x_1 POL(g(x_1)) = x_1 POL(n__a) = 0 POL(n__f(x_1)) = x_1 POL(n__g(x_1)) = x_1 ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) f(z0) -> n__f(z0) g(z0) -> n__g(z0) a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__g(z0)) -> g(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 G(z0) -> c19 A -> c20 ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c23(A) ACTIVATE(z0) -> c24 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) S tuples: F(z0) -> c18 G(z0) -> c19 ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c23(A) K tuples: A -> c20 ACTIVATE(z0) -> c24 Defined Rule Symbols: encArg_1, f_1, g_1, a, activate_1 Defined Pair Symbols: ENCARG_1, F_1, G_1, A, ACTIVATE_1, ENCODE_F_1, ENCODE_G_1, ENCODE_ACTIVATE_1 Compound Symbols: c1_1, c2_1, c3_1, c5_2, c6_2, c7_1, c8_2, c18, c19, c20, c21_2, c22_2, c23_1, c24, c4_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. ACTIVATE(n__a) -> c23(A) We considered the (Usable) Rules:none And the Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 G(z0) -> c19 A -> c20 ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c23(A) ACTIVATE(z0) -> c24 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A) = 0 POL(ACTIVATE(x_1)) = [1] POL(ENCARG(x_1)) = x_1 POL(ENCODE_ACTIVATE(x_1)) = [1] + x_1 POL(ENCODE_F(x_1)) = 0 POL(ENCODE_G(x_1)) = 0 POL(F(x_1)) = 0 POL(G(x_1)) = 0 POL(a) = [1] POL(activate(x_1)) = [1] + x_1 POL(c(x_1)) = [1] + x_1 POL(c1(x_1)) = x_1 POL(c18) = 0 POL(c19) = 0 POL(c2(x_1)) = x_1 POL(c20) = 0 POL(c21(x_1, x_2)) = x_1 + x_2 POL(c22(x_1, x_2)) = x_1 + x_2 POL(c23(x_1)) = x_1 POL(c24) = 0 POL(c3(x_1)) = x_1 POL(c4(x_1)) = x_1 POL(c5(x_1, x_2)) = x_1 + x_2 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c7(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(cons_a) = 0 POL(cons_activate(x_1)) = [1] + x_1 POL(cons_f(x_1)) = [1] + x_1 POL(cons_g(x_1)) = [1] + x_1 POL(encArg(x_1)) = [1] + x_1 POL(f(x_1)) = [1] + x_1 POL(g(x_1)) = [1] + x_1 POL(n__a) = [1] POL(n__f(x_1)) = [1] + x_1 POL(n__g(x_1)) = [1] + x_1 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) f(z0) -> n__f(z0) g(z0) -> n__g(z0) a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__g(z0)) -> g(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 G(z0) -> c19 A -> c20 ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c23(A) ACTIVATE(z0) -> c24 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) S tuples: F(z0) -> c18 G(z0) -> c19 ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) K tuples: A -> c20 ACTIVATE(z0) -> c24 ACTIVATE(n__a) -> c23(A) Defined Rule Symbols: encArg_1, f_1, g_1, a, activate_1 Defined Pair Symbols: ENCARG_1, F_1, G_1, A, ACTIVATE_1, ENCODE_F_1, ENCODE_G_1, ENCODE_ACTIVATE_1 Compound Symbols: c1_1, c2_1, c3_1, c5_2, c6_2, c7_1, c8_2, c18, c19, c20, c21_2, c22_2, c23_1, c24, c4_1 ---------------------------------------- (19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(z0) -> c18 ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) We considered the (Usable) Rules: encArg(n__a) -> n__a encArg(cons_a) -> a g(z0) -> n__g(z0) activate(n__g(z0)) -> g(activate(z0)) f(z0) -> n__f(z0) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) activate(z0) -> z0 encArg(c(z0)) -> c(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) activate(n__a) -> a activate(n__f(z0)) -> f(activate(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) a -> n__a And the Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 G(z0) -> c19 A -> c20 ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c23(A) ACTIVATE(z0) -> c24 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A) = 0 POL(ACTIVATE(x_1)) = [1] + x_1 POL(ENCARG(x_1)) = [2] + x_1^2 POL(ENCODE_ACTIVATE(x_1)) = [1] + x_1 + x_1^2 POL(ENCODE_F(x_1)) = [2] + [2]x_1^2 POL(ENCODE_G(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(F(x_1)) = [2] POL(G(x_1)) = 0 POL(a) = 0 POL(activate(x_1)) = x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c18) = 0 POL(c19) = 0 POL(c2(x_1)) = x_1 POL(c20) = 0 POL(c21(x_1, x_2)) = x_1 + x_2 POL(c22(x_1, x_2)) = x_1 + x_2 POL(c23(x_1)) = x_1 POL(c24) = 0 POL(c3(x_1)) = x_1 POL(c4(x_1)) = x_1 POL(c5(x_1, x_2)) = x_1 + x_2 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c7(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(cons_a) = 0 POL(cons_activate(x_1)) = [1] + x_1 POL(cons_f(x_1)) = [2] + x_1 POL(cons_g(x_1)) = [2] + x_1 POL(encArg(x_1)) = x_1 POL(f(x_1)) = [2] + x_1 POL(g(x_1)) = [2] + x_1 POL(n__a) = 0 POL(n__f(x_1)) = [2] + x_1 POL(n__g(x_1)) = [2] + x_1 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) f(z0) -> n__f(z0) g(z0) -> n__g(z0) a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__g(z0)) -> g(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 G(z0) -> c19 A -> c20 ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c23(A) ACTIVATE(z0) -> c24 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) S tuples: G(z0) -> c19 ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) K tuples: A -> c20 ACTIVATE(z0) -> c24 ACTIVATE(n__a) -> c23(A) F(z0) -> c18 ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) Defined Rule Symbols: encArg_1, f_1, g_1, a, activate_1 Defined Pair Symbols: ENCARG_1, F_1, G_1, A, ACTIVATE_1, ENCODE_F_1, ENCODE_G_1, ENCODE_ACTIVATE_1 Compound Symbols: c1_1, c2_1, c3_1, c5_2, c6_2, c7_1, c8_2, c18, c19, c20, c21_2, c22_2, c23_1, c24, c4_1 ---------------------------------------- (21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) We considered the (Usable) Rules: encArg(n__a) -> n__a encArg(cons_a) -> a g(z0) -> n__g(z0) activate(n__g(z0)) -> g(activate(z0)) f(z0) -> n__f(z0) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) activate(z0) -> z0 encArg(c(z0)) -> c(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) activate(n__a) -> a activate(n__f(z0)) -> f(activate(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) a -> n__a And the Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 G(z0) -> c19 A -> c20 ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c23(A) ACTIVATE(z0) -> c24 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A) = [1] POL(ACTIVATE(x_1)) = [1] + [2]x_1 POL(ENCARG(x_1)) = [2] + x_1^2 POL(ENCODE_ACTIVATE(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(ENCODE_F(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(ENCODE_G(x_1)) = [2] + x_1 + [2]x_1^2 POL(F(x_1)) = [1] POL(G(x_1)) = 0 POL(a) = 0 POL(activate(x_1)) = x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c18) = 0 POL(c19) = 0 POL(c2(x_1)) = x_1 POL(c20) = 0 POL(c21(x_1, x_2)) = x_1 + x_2 POL(c22(x_1, x_2)) = x_1 + x_2 POL(c23(x_1)) = x_1 POL(c24) = 0 POL(c3(x_1)) = x_1 POL(c4(x_1)) = x_1 POL(c5(x_1, x_2)) = x_1 + x_2 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c7(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(cons_a) = 0 POL(cons_activate(x_1)) = [1] + x_1 POL(cons_f(x_1)) = [1] + x_1 POL(cons_g(x_1)) = [1] + x_1 POL(encArg(x_1)) = x_1 POL(f(x_1)) = [1] + x_1 POL(g(x_1)) = x_1 POL(n__a) = 0 POL(n__f(x_1)) = [1] + x_1 POL(n__g(x_1)) = x_1 ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) f(z0) -> n__f(z0) g(z0) -> n__g(z0) a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__g(z0)) -> g(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 G(z0) -> c19 A -> c20 ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c23(A) ACTIVATE(z0) -> c24 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) S tuples: G(z0) -> c19 K tuples: A -> c20 ACTIVATE(z0) -> c24 ACTIVATE(n__a) -> c23(A) F(z0) -> c18 ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) Defined Rule Symbols: encArg_1, f_1, g_1, a, activate_1 Defined Pair Symbols: ENCARG_1, F_1, G_1, A, ACTIVATE_1, ENCODE_F_1, ENCODE_G_1, ENCODE_ACTIVATE_1 Compound Symbols: c1_1, c2_1, c3_1, c5_2, c6_2, c7_1, c8_2, c18, c19, c20, c21_2, c22_2, c23_1, c24, c4_1 ---------------------------------------- (23) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. G(z0) -> c19 We considered the (Usable) Rules: encArg(n__a) -> n__a encArg(cons_a) -> a g(z0) -> n__g(z0) activate(n__g(z0)) -> g(activate(z0)) f(z0) -> n__f(z0) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) activate(z0) -> z0 encArg(c(z0)) -> c(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) activate(n__a) -> a activate(n__f(z0)) -> f(activate(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) a -> n__a And the Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 G(z0) -> c19 A -> c20 ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c23(A) ACTIVATE(z0) -> c24 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A) = 0 POL(ACTIVATE(x_1)) = x_1 POL(ENCARG(x_1)) = [2] + [2]x_1^2 POL(ENCODE_ACTIVATE(x_1)) = [1] + x_1 + [2]x_1^2 POL(ENCODE_F(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(ENCODE_G(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(F(x_1)) = 0 POL(G(x_1)) = [2] POL(a) = 0 POL(activate(x_1)) = x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c18) = 0 POL(c19) = 0 POL(c2(x_1)) = x_1 POL(c20) = 0 POL(c21(x_1, x_2)) = x_1 + x_2 POL(c22(x_1, x_2)) = x_1 + x_2 POL(c23(x_1)) = x_1 POL(c24) = 0 POL(c3(x_1)) = x_1 POL(c4(x_1)) = x_1 POL(c5(x_1, x_2)) = x_1 + x_2 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c7(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(cons_a) = 0 POL(cons_activate(x_1)) = [2] + x_1 POL(cons_f(x_1)) = [1] + x_1 POL(cons_g(x_1)) = [2] + x_1 POL(encArg(x_1)) = x_1 POL(f(x_1)) = [1] + x_1 POL(g(x_1)) = [2] + x_1 POL(n__a) = 0 POL(n__f(x_1)) = [1] + x_1 POL(n__g(x_1)) = [2] + x_1 ---------------------------------------- (24) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) f(z0) -> n__f(z0) g(z0) -> n__g(z0) a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__g(z0)) -> g(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 G(z0) -> c19 A -> c20 ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c23(A) ACTIVATE(z0) -> c24 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) S tuples:none K tuples: A -> c20 ACTIVATE(z0) -> c24 ACTIVATE(n__a) -> c23(A) F(z0) -> c18 ACTIVATE(n__g(z0)) -> c22(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__f(z0)) -> c21(F(activate(z0)), ACTIVATE(z0)) G(z0) -> c19 Defined Rule Symbols: encArg_1, f_1, g_1, a, activate_1 Defined Pair Symbols: ENCARG_1, F_1, G_1, A, ACTIVATE_1, ENCODE_F_1, ENCODE_G_1, ENCODE_ACTIVATE_1 Compound Symbols: c1_1, c2_1, c3_1, c5_2, c6_2, c7_1, c8_2, c18, c19, c20, c21_2, c22_2, c23_1, c24, c4_1 ---------------------------------------- (25) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (26) BOUNDS(1, 1) ---------------------------------------- (27) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (28) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(f(a)) -> c(n__f(n__g(n__f(n__a)))) f(X) -> n__f(X) g(X) -> n__g(X) a -> n__a activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(activate(X)) activate(n__a) -> a activate(X) -> X The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(n__f(x_1)) -> n__f(encArg(x_1)) encArg(n__g(x_1)) -> n__g(encArg(x_1)) encArg(n__a) -> n__a encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_a) -> a encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_c(x_1) -> c(encArg(x_1)) encode_n__f(x_1) -> n__f(encArg(x_1)) encode_n__g(x_1) -> n__g(encArg(x_1)) encode_n__a -> n__a encode_g(x_1) -> g(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (29) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence activate(n__f(X)) ->^+ f(activate(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / n__f(X)]. The result substitution is [ ]. ---------------------------------------- (30) Complex Obligation (BEST) ---------------------------------------- (31) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(f(a)) -> c(n__f(n__g(n__f(n__a)))) f(X) -> n__f(X) g(X) -> n__g(X) a -> n__a activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(activate(X)) activate(n__a) -> a activate(X) -> X The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(n__f(x_1)) -> n__f(encArg(x_1)) encArg(n__g(x_1)) -> n__g(encArg(x_1)) encArg(n__a) -> n__a encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_a) -> a encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_c(x_1) -> c(encArg(x_1)) encode_n__f(x_1) -> n__f(encArg(x_1)) encode_n__g(x_1) -> n__g(encArg(x_1)) encode_n__a -> n__a encode_g(x_1) -> g(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (32) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (33) BOUNDS(n^1, INF) ---------------------------------------- (34) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(f(a)) -> c(n__f(n__g(n__f(n__a)))) f(X) -> n__f(X) g(X) -> n__g(X) a -> n__a activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(activate(X)) activate(n__a) -> a activate(X) -> X The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(n__f(x_1)) -> n__f(encArg(x_1)) encArg(n__g(x_1)) -> n__g(encArg(x_1)) encArg(n__a) -> n__a encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_a) -> a encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_c(x_1) -> c(encArg(x_1)) encode_n__f(x_1) -> n__f(encArg(x_1)) encode_n__g(x_1) -> n__g(encArg(x_1)) encode_n__a -> n__a encode_g(x_1) -> g(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) Rewrite Strategy: INNERMOST