/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 142 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 444 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 187 ms] (18) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(g(X), Y) -> a__f(mark(X), f(g(X), Y)) mark(f(X1, X2)) -> a__f(mark(X1), X2) mark(g(X)) -> g(mark(X)) a__f(X1, X2) -> f(X1, X2) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(g(x_1)) -> g(encArg(x_1)) encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_a__f(x_1, x_2)) -> a__f(encArg(x_1), encArg(x_2)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1, x_2) -> a__f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(g(X), Y) -> a__f(mark(X), f(g(X), Y)) mark(f(X1, X2)) -> a__f(mark(X1), X2) mark(g(X)) -> g(mark(X)) a__f(X1, X2) -> f(X1, X2) The (relative) TRS S consists of the following rules: encArg(g(x_1)) -> g(encArg(x_1)) encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_a__f(x_1, x_2)) -> a__f(encArg(x_1), encArg(x_2)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1, x_2) -> a__f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(g(X), Y) -> a__f(mark(X), f(g(X), Y)) mark(f(X1, X2)) -> a__f(mark(X1), X2) mark(g(X)) -> g(mark(X)) a__f(X1, X2) -> f(X1, X2) The (relative) TRS S consists of the following rules: encArg(g(x_1)) -> g(encArg(x_1)) encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_a__f(x_1, x_2)) -> a__f(encArg(x_1), encArg(x_2)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1, x_2) -> a__f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(g(X), Y) -> a__f(mark(X), f(g(X), Y)) mark(f(X1, X2)) -> a__f(mark(X1), X2) mark(g(X)) -> g(mark(X)) a__f(X1, X2) -> f(X1, X2) The (relative) TRS S consists of the following rules: encArg(g(x_1)) -> g(encArg(x_1)) encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_a__f(x_1, x_2)) -> a__f(encArg(x_1), encArg(x_2)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1, x_2) -> a__f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: a__f(g(X), Y) -> a__f(mark(X), f(g(X), Y)) mark(f(X1, X2)) -> a__f(mark(X1), X2) mark(g(X)) -> g(mark(X)) a__f(X1, X2) -> f(X1, X2) encArg(g(x_1)) -> g(encArg(x_1)) encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_a__f(x_1, x_2)) -> a__f(encArg(x_1), encArg(x_2)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1, x_2) -> a__f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Types: a__f :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark g :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark mark :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark f :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark encArg :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark cons_a__f :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark cons_mark :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark encode_a__f :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark encode_g :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark encode_mark :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark encode_f :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark hole_g:f:cons_a__f:cons_mark1_0 :: g:f:cons_a__f:cons_mark gen_g:f:cons_a__f:cons_mark2_0 :: Nat -> g:f:cons_a__f:cons_mark ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: a__f, mark, encArg They will be analysed ascendingly in the following order: a__f = mark a__f < encArg mark < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: a__f(g(X), Y) -> a__f(mark(X), f(g(X), Y)) mark(f(X1, X2)) -> a__f(mark(X1), X2) mark(g(X)) -> g(mark(X)) a__f(X1, X2) -> f(X1, X2) encArg(g(x_1)) -> g(encArg(x_1)) encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_a__f(x_1, x_2)) -> a__f(encArg(x_1), encArg(x_2)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1, x_2) -> a__f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Types: a__f :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark g :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark mark :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark f :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark encArg :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark cons_a__f :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark cons_mark :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark encode_a__f :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark encode_g :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark encode_mark :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark encode_f :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark hole_g:f:cons_a__f:cons_mark1_0 :: g:f:cons_a__f:cons_mark gen_g:f:cons_a__f:cons_mark2_0 :: Nat -> g:f:cons_a__f:cons_mark Generator Equations: gen_g:f:cons_a__f:cons_mark2_0(0) <=> hole_g:f:cons_a__f:cons_mark1_0 gen_g:f:cons_a__f:cons_mark2_0(+(x, 1)) <=> g(gen_g:f:cons_a__f:cons_mark2_0(x)) The following defined symbols remain to be analysed: mark, a__f, encArg They will be analysed ascendingly in the following order: a__f = mark a__f < encArg mark < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: mark(gen_g:f:cons_a__f:cons_mark2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Induction Base: mark(gen_g:f:cons_a__f:cons_mark2_0(+(1, 0))) Induction Step: mark(gen_g:f:cons_a__f:cons_mark2_0(+(1, +(n4_0, 1)))) ->_R^Omega(1) g(mark(gen_g:f:cons_a__f:cons_mark2_0(+(1, n4_0)))) ->_IH g(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: a__f(g(X), Y) -> a__f(mark(X), f(g(X), Y)) mark(f(X1, X2)) -> a__f(mark(X1), X2) mark(g(X)) -> g(mark(X)) a__f(X1, X2) -> f(X1, X2) encArg(g(x_1)) -> g(encArg(x_1)) encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_a__f(x_1, x_2)) -> a__f(encArg(x_1), encArg(x_2)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1, x_2) -> a__f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Types: a__f :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark g :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark mark :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark f :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark encArg :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark cons_a__f :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark cons_mark :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark encode_a__f :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark encode_g :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark encode_mark :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark encode_f :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark hole_g:f:cons_a__f:cons_mark1_0 :: g:f:cons_a__f:cons_mark gen_g:f:cons_a__f:cons_mark2_0 :: Nat -> g:f:cons_a__f:cons_mark Generator Equations: gen_g:f:cons_a__f:cons_mark2_0(0) <=> hole_g:f:cons_a__f:cons_mark1_0 gen_g:f:cons_a__f:cons_mark2_0(+(x, 1)) <=> g(gen_g:f:cons_a__f:cons_mark2_0(x)) The following defined symbols remain to be analysed: mark, a__f, encArg They will be analysed ascendingly in the following order: a__f = mark a__f < encArg mark < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Innermost TRS: Rules: a__f(g(X), Y) -> a__f(mark(X), f(g(X), Y)) mark(f(X1, X2)) -> a__f(mark(X1), X2) mark(g(X)) -> g(mark(X)) a__f(X1, X2) -> f(X1, X2) encArg(g(x_1)) -> g(encArg(x_1)) encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_a__f(x_1, x_2)) -> a__f(encArg(x_1), encArg(x_2)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1, x_2) -> a__f(encArg(x_1), encArg(x_2)) encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Types: a__f :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark g :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark mark :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark f :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark encArg :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark cons_a__f :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark cons_mark :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark encode_a__f :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark encode_g :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark encode_mark :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark encode_f :: g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark -> g:f:cons_a__f:cons_mark hole_g:f:cons_a__f:cons_mark1_0 :: g:f:cons_a__f:cons_mark gen_g:f:cons_a__f:cons_mark2_0 :: Nat -> g:f:cons_a__f:cons_mark Lemmas: mark(gen_g:f:cons_a__f:cons_mark2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Generator Equations: gen_g:f:cons_a__f:cons_mark2_0(0) <=> hole_g:f:cons_a__f:cons_mark1_0 gen_g:f:cons_a__f:cons_mark2_0(+(x, 1)) <=> g(gen_g:f:cons_a__f:cons_mark2_0(x)) The following defined symbols remain to be analysed: a__f, encArg They will be analysed ascendingly in the following order: a__f = mark a__f < encArg mark < encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_g:f:cons_a__f:cons_mark2_0(+(1, n835_0))) -> *3_0, rt in Omega(0) Induction Base: encArg(gen_g:f:cons_a__f:cons_mark2_0(+(1, 0))) Induction Step: encArg(gen_g:f:cons_a__f:cons_mark2_0(+(1, +(n835_0, 1)))) ->_R^Omega(0) g(encArg(gen_g:f:cons_a__f:cons_mark2_0(+(1, n835_0)))) ->_IH g(*3_0) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (18) BOUNDS(1, INF)