/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 571 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(2ndspos(0, Z)) -> mark(rnil) active(2ndspos(s(N), cons(X, Z))) -> mark(2ndspos(s(N), cons2(X, Z))) active(2ndspos(s(N), cons2(X, cons(Y, Z)))) -> mark(rcons(posrecip(Y), 2ndsneg(N, Z))) active(2ndsneg(0, Z)) -> mark(rnil) active(2ndsneg(s(N), cons(X, Z))) -> mark(2ndsneg(s(N), cons2(X, Z))) active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) -> mark(rcons(negrecip(Y), 2ndspos(N, Z))) active(pi(X)) -> mark(2ndspos(X, from(0))) active(plus(0, Y)) -> mark(Y) active(plus(s(X), Y)) -> mark(s(plus(X, Y))) active(times(0, Y)) -> mark(0) active(times(s(X), Y)) -> mark(plus(Y, times(X, Y))) active(square(X)) -> mark(times(X, X)) active(s(X)) -> s(active(X)) active(posrecip(X)) -> posrecip(active(X)) active(negrecip(X)) -> negrecip(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(cons2(X1, X2)) -> cons2(X1, active(X2)) active(rcons(X1, X2)) -> rcons(active(X1), X2) active(rcons(X1, X2)) -> rcons(X1, active(X2)) active(from(X)) -> from(active(X)) active(2ndspos(X1, X2)) -> 2ndspos(active(X1), X2) active(2ndspos(X1, X2)) -> 2ndspos(X1, active(X2)) active(2ndsneg(X1, X2)) -> 2ndsneg(active(X1), X2) active(2ndsneg(X1, X2)) -> 2ndsneg(X1, active(X2)) active(pi(X)) -> pi(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(times(X1, X2)) -> times(active(X1), X2) active(times(X1, X2)) -> times(X1, active(X2)) active(square(X)) -> square(active(X)) s(mark(X)) -> mark(s(X)) posrecip(mark(X)) -> mark(posrecip(X)) negrecip(mark(X)) -> mark(negrecip(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) cons2(X1, mark(X2)) -> mark(cons2(X1, X2)) rcons(mark(X1), X2) -> mark(rcons(X1, X2)) rcons(X1, mark(X2)) -> mark(rcons(X1, X2)) from(mark(X)) -> mark(from(X)) 2ndspos(mark(X1), X2) -> mark(2ndspos(X1, X2)) 2ndspos(X1, mark(X2)) -> mark(2ndspos(X1, X2)) 2ndsneg(mark(X1), X2) -> mark(2ndsneg(X1, X2)) 2ndsneg(X1, mark(X2)) -> mark(2ndsneg(X1, X2)) pi(mark(X)) -> mark(pi(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) times(mark(X1), X2) -> mark(times(X1, X2)) times(X1, mark(X2)) -> mark(times(X1, X2)) square(mark(X)) -> mark(square(X)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(posrecip(X)) -> posrecip(proper(X)) proper(negrecip(X)) -> negrecip(proper(X)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(cons2(X1, X2)) -> cons2(proper(X1), proper(X2)) proper(rnil) -> ok(rnil) proper(rcons(X1, X2)) -> rcons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(2ndspos(X1, X2)) -> 2ndspos(proper(X1), proper(X2)) proper(2ndsneg(X1, X2)) -> 2ndsneg(proper(X1), proper(X2)) proper(pi(X)) -> pi(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(times(X1, X2)) -> times(proper(X1), proper(X2)) proper(square(X)) -> square(proper(X)) s(ok(X)) -> ok(s(X)) posrecip(ok(X)) -> ok(posrecip(X)) negrecip(ok(X)) -> ok(negrecip(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) cons2(ok(X1), ok(X2)) -> ok(cons2(X1, X2)) rcons(ok(X1), ok(X2)) -> ok(rcons(X1, X2)) from(ok(X)) -> ok(from(X)) 2ndspos(ok(X1), ok(X2)) -> ok(2ndspos(X1, X2)) 2ndsneg(ok(X1), ok(X2)) -> ok(2ndsneg(X1, X2)) pi(ok(X)) -> ok(pi(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) times(ok(X1), ok(X2)) -> ok(times(X1, X2)) square(ok(X)) -> ok(square(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(0) -> 0 encArg(rnil) -> rnil encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(nil) -> nil encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_posrecip(x_1)) -> posrecip(encArg(x_1)) encArg(cons_negrecip(x_1)) -> negrecip(encArg(x_1)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_cons2(x_1, x_2)) -> cons2(encArg(x_1), encArg(x_2)) encArg(cons_rcons(x_1, x_2)) -> rcons(encArg(x_1), encArg(x_2)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_2ndspos(x_1, x_2)) -> 2ndspos(encArg(x_1), encArg(x_2)) encArg(cons_2ndsneg(x_1, x_2)) -> 2ndsneg(encArg(x_1), encArg(x_2)) encArg(cons_pi(x_1)) -> pi(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_square(x_1)) -> square(encArg(x_1)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_from(x_1) -> from(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_2ndspos(x_1, x_2) -> 2ndspos(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_rnil -> rnil encode_cons2(x_1, x_2) -> cons2(encArg(x_1), encArg(x_2)) encode_rcons(x_1, x_2) -> rcons(encArg(x_1), encArg(x_2)) encode_posrecip(x_1) -> posrecip(encArg(x_1)) encode_2ndsneg(x_1, x_2) -> 2ndsneg(encArg(x_1), encArg(x_2)) encode_negrecip(x_1) -> negrecip(encArg(x_1)) encode_pi(x_1) -> pi(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_square(x_1) -> square(encArg(x_1)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_nil -> nil encode_top(x_1) -> top(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(2ndspos(0, Z)) -> mark(rnil) active(2ndspos(s(N), cons(X, Z))) -> mark(2ndspos(s(N), cons2(X, Z))) active(2ndspos(s(N), cons2(X, cons(Y, Z)))) -> mark(rcons(posrecip(Y), 2ndsneg(N, Z))) active(2ndsneg(0, Z)) -> mark(rnil) active(2ndsneg(s(N), cons(X, Z))) -> mark(2ndsneg(s(N), cons2(X, Z))) active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) -> mark(rcons(negrecip(Y), 2ndspos(N, Z))) active(pi(X)) -> mark(2ndspos(X, from(0))) active(plus(0, Y)) -> mark(Y) active(plus(s(X), Y)) -> mark(s(plus(X, Y))) active(times(0, Y)) -> mark(0) active(times(s(X), Y)) -> mark(plus(Y, times(X, Y))) active(square(X)) -> mark(times(X, X)) active(s(X)) -> s(active(X)) active(posrecip(X)) -> posrecip(active(X)) active(negrecip(X)) -> negrecip(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(cons2(X1, X2)) -> cons2(X1, active(X2)) active(rcons(X1, X2)) -> rcons(active(X1), X2) active(rcons(X1, X2)) -> rcons(X1, active(X2)) active(from(X)) -> from(active(X)) active(2ndspos(X1, X2)) -> 2ndspos(active(X1), X2) active(2ndspos(X1, X2)) -> 2ndspos(X1, active(X2)) active(2ndsneg(X1, X2)) -> 2ndsneg(active(X1), X2) active(2ndsneg(X1, X2)) -> 2ndsneg(X1, active(X2)) active(pi(X)) -> pi(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(times(X1, X2)) -> times(active(X1), X2) active(times(X1, X2)) -> times(X1, active(X2)) active(square(X)) -> square(active(X)) s(mark(X)) -> mark(s(X)) posrecip(mark(X)) -> mark(posrecip(X)) negrecip(mark(X)) -> mark(negrecip(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) cons2(X1, mark(X2)) -> mark(cons2(X1, X2)) rcons(mark(X1), X2) -> mark(rcons(X1, X2)) rcons(X1, mark(X2)) -> mark(rcons(X1, X2)) from(mark(X)) -> mark(from(X)) 2ndspos(mark(X1), X2) -> mark(2ndspos(X1, X2)) 2ndspos(X1, mark(X2)) -> mark(2ndspos(X1, X2)) 2ndsneg(mark(X1), X2) -> mark(2ndsneg(X1, X2)) 2ndsneg(X1, mark(X2)) -> mark(2ndsneg(X1, X2)) pi(mark(X)) -> mark(pi(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) times(mark(X1), X2) -> mark(times(X1, X2)) times(X1, mark(X2)) -> mark(times(X1, X2)) square(mark(X)) -> mark(square(X)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(posrecip(X)) -> posrecip(proper(X)) proper(negrecip(X)) -> negrecip(proper(X)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(cons2(X1, X2)) -> cons2(proper(X1), proper(X2)) proper(rnil) -> ok(rnil) proper(rcons(X1, X2)) -> rcons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(2ndspos(X1, X2)) -> 2ndspos(proper(X1), proper(X2)) proper(2ndsneg(X1, X2)) -> 2ndsneg(proper(X1), proper(X2)) proper(pi(X)) -> pi(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(times(X1, X2)) -> times(proper(X1), proper(X2)) proper(square(X)) -> square(proper(X)) s(ok(X)) -> ok(s(X)) posrecip(ok(X)) -> ok(posrecip(X)) negrecip(ok(X)) -> ok(negrecip(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) cons2(ok(X1), ok(X2)) -> ok(cons2(X1, X2)) rcons(ok(X1), ok(X2)) -> ok(rcons(X1, X2)) from(ok(X)) -> ok(from(X)) 2ndspos(ok(X1), ok(X2)) -> ok(2ndspos(X1, X2)) 2ndsneg(ok(X1), ok(X2)) -> ok(2ndsneg(X1, X2)) pi(ok(X)) -> ok(pi(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) times(ok(X1), ok(X2)) -> ok(times(X1, X2)) square(ok(X)) -> ok(square(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) The (relative) TRS S consists of the following rules: encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(0) -> 0 encArg(rnil) -> rnil encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(nil) -> nil encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_posrecip(x_1)) -> posrecip(encArg(x_1)) encArg(cons_negrecip(x_1)) -> negrecip(encArg(x_1)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_cons2(x_1, x_2)) -> cons2(encArg(x_1), encArg(x_2)) encArg(cons_rcons(x_1, x_2)) -> rcons(encArg(x_1), encArg(x_2)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_2ndspos(x_1, x_2)) -> 2ndspos(encArg(x_1), encArg(x_2)) encArg(cons_2ndsneg(x_1, x_2)) -> 2ndsneg(encArg(x_1), encArg(x_2)) encArg(cons_pi(x_1)) -> pi(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_square(x_1)) -> square(encArg(x_1)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_from(x_1) -> from(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_2ndspos(x_1, x_2) -> 2ndspos(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_rnil -> rnil encode_cons2(x_1, x_2) -> cons2(encArg(x_1), encArg(x_2)) encode_rcons(x_1, x_2) -> rcons(encArg(x_1), encArg(x_2)) encode_posrecip(x_1) -> posrecip(encArg(x_1)) encode_2ndsneg(x_1, x_2) -> 2ndsneg(encArg(x_1), encArg(x_2)) encode_negrecip(x_1) -> negrecip(encArg(x_1)) encode_pi(x_1) -> pi(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_square(x_1) -> square(encArg(x_1)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_nil -> nil encode_top(x_1) -> top(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(2ndspos(0, Z)) -> mark(rnil) active(2ndspos(s(N), cons(X, Z))) -> mark(2ndspos(s(N), cons2(X, Z))) active(2ndspos(s(N), cons2(X, cons(Y, Z)))) -> mark(rcons(posrecip(Y), 2ndsneg(N, Z))) active(2ndsneg(0, Z)) -> mark(rnil) active(2ndsneg(s(N), cons(X, Z))) -> mark(2ndsneg(s(N), cons2(X, Z))) active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) -> mark(rcons(negrecip(Y), 2ndspos(N, Z))) active(pi(X)) -> mark(2ndspos(X, from(0))) active(plus(0, Y)) -> mark(Y) active(plus(s(X), Y)) -> mark(s(plus(X, Y))) active(times(0, Y)) -> mark(0) active(times(s(X), Y)) -> mark(plus(Y, times(X, Y))) active(square(X)) -> mark(times(X, X)) active(s(X)) -> s(active(X)) active(posrecip(X)) -> posrecip(active(X)) active(negrecip(X)) -> negrecip(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(cons2(X1, X2)) -> cons2(X1, active(X2)) active(rcons(X1, X2)) -> rcons(active(X1), X2) active(rcons(X1, X2)) -> rcons(X1, active(X2)) active(from(X)) -> from(active(X)) active(2ndspos(X1, X2)) -> 2ndspos(active(X1), X2) active(2ndspos(X1, X2)) -> 2ndspos(X1, active(X2)) active(2ndsneg(X1, X2)) -> 2ndsneg(active(X1), X2) active(2ndsneg(X1, X2)) -> 2ndsneg(X1, active(X2)) active(pi(X)) -> pi(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(times(X1, X2)) -> times(active(X1), X2) active(times(X1, X2)) -> times(X1, active(X2)) active(square(X)) -> square(active(X)) s(mark(X)) -> mark(s(X)) posrecip(mark(X)) -> mark(posrecip(X)) negrecip(mark(X)) -> mark(negrecip(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) cons2(X1, mark(X2)) -> mark(cons2(X1, X2)) rcons(mark(X1), X2) -> mark(rcons(X1, X2)) rcons(X1, mark(X2)) -> mark(rcons(X1, X2)) from(mark(X)) -> mark(from(X)) 2ndspos(mark(X1), X2) -> mark(2ndspos(X1, X2)) 2ndspos(X1, mark(X2)) -> mark(2ndspos(X1, X2)) 2ndsneg(mark(X1), X2) -> mark(2ndsneg(X1, X2)) 2ndsneg(X1, mark(X2)) -> mark(2ndsneg(X1, X2)) pi(mark(X)) -> mark(pi(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) times(mark(X1), X2) -> mark(times(X1, X2)) times(X1, mark(X2)) -> mark(times(X1, X2)) square(mark(X)) -> mark(square(X)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(posrecip(X)) -> posrecip(proper(X)) proper(negrecip(X)) -> negrecip(proper(X)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(cons2(X1, X2)) -> cons2(proper(X1), proper(X2)) proper(rnil) -> ok(rnil) proper(rcons(X1, X2)) -> rcons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(2ndspos(X1, X2)) -> 2ndspos(proper(X1), proper(X2)) proper(2ndsneg(X1, X2)) -> 2ndsneg(proper(X1), proper(X2)) proper(pi(X)) -> pi(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(times(X1, X2)) -> times(proper(X1), proper(X2)) proper(square(X)) -> square(proper(X)) s(ok(X)) -> ok(s(X)) posrecip(ok(X)) -> ok(posrecip(X)) negrecip(ok(X)) -> ok(negrecip(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) cons2(ok(X1), ok(X2)) -> ok(cons2(X1, X2)) rcons(ok(X1), ok(X2)) -> ok(rcons(X1, X2)) from(ok(X)) -> ok(from(X)) 2ndspos(ok(X1), ok(X2)) -> ok(2ndspos(X1, X2)) 2ndsneg(ok(X1), ok(X2)) -> ok(2ndsneg(X1, X2)) pi(ok(X)) -> ok(pi(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) times(ok(X1), ok(X2)) -> ok(times(X1, X2)) square(ok(X)) -> ok(square(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) The (relative) TRS S consists of the following rules: encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(0) -> 0 encArg(rnil) -> rnil encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(nil) -> nil encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_posrecip(x_1)) -> posrecip(encArg(x_1)) encArg(cons_negrecip(x_1)) -> negrecip(encArg(x_1)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_cons2(x_1, x_2)) -> cons2(encArg(x_1), encArg(x_2)) encArg(cons_rcons(x_1, x_2)) -> rcons(encArg(x_1), encArg(x_2)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_2ndspos(x_1, x_2)) -> 2ndspos(encArg(x_1), encArg(x_2)) encArg(cons_2ndsneg(x_1, x_2)) -> 2ndsneg(encArg(x_1), encArg(x_2)) encArg(cons_pi(x_1)) -> pi(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_square(x_1)) -> square(encArg(x_1)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_from(x_1) -> from(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_2ndspos(x_1, x_2) -> 2ndspos(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_rnil -> rnil encode_cons2(x_1, x_2) -> cons2(encArg(x_1), encArg(x_2)) encode_rcons(x_1, x_2) -> rcons(encArg(x_1), encArg(x_2)) encode_posrecip(x_1) -> posrecip(encArg(x_1)) encode_2ndsneg(x_1, x_2) -> 2ndsneg(encArg(x_1), encArg(x_2)) encode_negrecip(x_1) -> negrecip(encArg(x_1)) encode_pi(x_1) -> pi(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_square(x_1) -> square(encArg(x_1)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_nil -> nil encode_top(x_1) -> top(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(2ndspos(0, Z)) -> mark(rnil) active(2ndspos(s(N), cons(X, Z))) -> mark(2ndspos(s(N), cons2(X, Z))) active(2ndspos(s(N), cons2(X, cons(Y, Z)))) -> mark(rcons(posrecip(Y), 2ndsneg(N, Z))) active(2ndsneg(0, Z)) -> mark(rnil) active(2ndsneg(s(N), cons(X, Z))) -> mark(2ndsneg(s(N), cons2(X, Z))) active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) -> mark(rcons(negrecip(Y), 2ndspos(N, Z))) active(pi(X)) -> mark(2ndspos(X, from(0))) active(plus(0, Y)) -> mark(Y) active(plus(s(X), Y)) -> mark(s(plus(X, Y))) active(times(0, Y)) -> mark(0) active(times(s(X), Y)) -> mark(plus(Y, times(X, Y))) active(square(X)) -> mark(times(X, X)) active(s(X)) -> s(active(X)) active(posrecip(X)) -> posrecip(active(X)) active(negrecip(X)) -> negrecip(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(cons2(X1, X2)) -> cons2(X1, active(X2)) active(rcons(X1, X2)) -> rcons(active(X1), X2) active(rcons(X1, X2)) -> rcons(X1, active(X2)) active(from(X)) -> from(active(X)) active(2ndspos(X1, X2)) -> 2ndspos(active(X1), X2) active(2ndspos(X1, X2)) -> 2ndspos(X1, active(X2)) active(2ndsneg(X1, X2)) -> 2ndsneg(active(X1), X2) active(2ndsneg(X1, X2)) -> 2ndsneg(X1, active(X2)) active(pi(X)) -> pi(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(times(X1, X2)) -> times(active(X1), X2) active(times(X1, X2)) -> times(X1, active(X2)) active(square(X)) -> square(active(X)) s(mark(X)) -> mark(s(X)) posrecip(mark(X)) -> mark(posrecip(X)) negrecip(mark(X)) -> mark(negrecip(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) cons2(X1, mark(X2)) -> mark(cons2(X1, X2)) rcons(mark(X1), X2) -> mark(rcons(X1, X2)) rcons(X1, mark(X2)) -> mark(rcons(X1, X2)) from(mark(X)) -> mark(from(X)) 2ndspos(mark(X1), X2) -> mark(2ndspos(X1, X2)) 2ndspos(X1, mark(X2)) -> mark(2ndspos(X1, X2)) 2ndsneg(mark(X1), X2) -> mark(2ndsneg(X1, X2)) 2ndsneg(X1, mark(X2)) -> mark(2ndsneg(X1, X2)) pi(mark(X)) -> mark(pi(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) times(mark(X1), X2) -> mark(times(X1, X2)) times(X1, mark(X2)) -> mark(times(X1, X2)) square(mark(X)) -> mark(square(X)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(posrecip(X)) -> posrecip(proper(X)) proper(negrecip(X)) -> negrecip(proper(X)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(cons2(X1, X2)) -> cons2(proper(X1), proper(X2)) proper(rnil) -> ok(rnil) proper(rcons(X1, X2)) -> rcons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(2ndspos(X1, X2)) -> 2ndspos(proper(X1), proper(X2)) proper(2ndsneg(X1, X2)) -> 2ndsneg(proper(X1), proper(X2)) proper(pi(X)) -> pi(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(times(X1, X2)) -> times(proper(X1), proper(X2)) proper(square(X)) -> square(proper(X)) s(ok(X)) -> ok(s(X)) posrecip(ok(X)) -> ok(posrecip(X)) negrecip(ok(X)) -> ok(negrecip(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) cons2(ok(X1), ok(X2)) -> ok(cons2(X1, X2)) rcons(ok(X1), ok(X2)) -> ok(rcons(X1, X2)) from(ok(X)) -> ok(from(X)) 2ndspos(ok(X1), ok(X2)) -> ok(2ndspos(X1, X2)) 2ndsneg(ok(X1), ok(X2)) -> ok(2ndsneg(X1, X2)) pi(ok(X)) -> ok(pi(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) times(ok(X1), ok(X2)) -> ok(times(X1, X2)) square(ok(X)) -> ok(square(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) The (relative) TRS S consists of the following rules: encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(0) -> 0 encArg(rnil) -> rnil encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(nil) -> nil encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_posrecip(x_1)) -> posrecip(encArg(x_1)) encArg(cons_negrecip(x_1)) -> negrecip(encArg(x_1)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_cons2(x_1, x_2)) -> cons2(encArg(x_1), encArg(x_2)) encArg(cons_rcons(x_1, x_2)) -> rcons(encArg(x_1), encArg(x_2)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_2ndspos(x_1, x_2)) -> 2ndspos(encArg(x_1), encArg(x_2)) encArg(cons_2ndsneg(x_1, x_2)) -> 2ndsneg(encArg(x_1), encArg(x_2)) encArg(cons_pi(x_1)) -> pi(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_square(x_1)) -> square(encArg(x_1)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_from(x_1) -> from(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_2ndspos(x_1, x_2) -> 2ndspos(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_rnil -> rnil encode_cons2(x_1, x_2) -> cons2(encArg(x_1), encArg(x_2)) encode_rcons(x_1, x_2) -> rcons(encArg(x_1), encArg(x_2)) encode_posrecip(x_1) -> posrecip(encArg(x_1)) encode_2ndsneg(x_1, x_2) -> 2ndsneg(encArg(x_1), encArg(x_2)) encode_negrecip(x_1) -> negrecip(encArg(x_1)) encode_pi(x_1) -> pi(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_square(x_1) -> square(encArg(x_1)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_nil -> nil encode_top(x_1) -> top(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence times(ok(X1), ok(X2)) ->^+ ok(times(X1, X2)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X1 / ok(X1), X2 / ok(X2)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(2ndspos(0, Z)) -> mark(rnil) active(2ndspos(s(N), cons(X, Z))) -> mark(2ndspos(s(N), cons2(X, Z))) active(2ndspos(s(N), cons2(X, cons(Y, Z)))) -> mark(rcons(posrecip(Y), 2ndsneg(N, Z))) active(2ndsneg(0, Z)) -> mark(rnil) active(2ndsneg(s(N), cons(X, Z))) -> mark(2ndsneg(s(N), cons2(X, Z))) active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) -> mark(rcons(negrecip(Y), 2ndspos(N, Z))) active(pi(X)) -> mark(2ndspos(X, from(0))) active(plus(0, Y)) -> mark(Y) active(plus(s(X), Y)) -> mark(s(plus(X, Y))) active(times(0, Y)) -> mark(0) active(times(s(X), Y)) -> mark(plus(Y, times(X, Y))) active(square(X)) -> mark(times(X, X)) active(s(X)) -> s(active(X)) active(posrecip(X)) -> posrecip(active(X)) active(negrecip(X)) -> negrecip(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(cons2(X1, X2)) -> cons2(X1, active(X2)) active(rcons(X1, X2)) -> rcons(active(X1), X2) active(rcons(X1, X2)) -> rcons(X1, active(X2)) active(from(X)) -> from(active(X)) active(2ndspos(X1, X2)) -> 2ndspos(active(X1), X2) active(2ndspos(X1, X2)) -> 2ndspos(X1, active(X2)) active(2ndsneg(X1, X2)) -> 2ndsneg(active(X1), X2) active(2ndsneg(X1, X2)) -> 2ndsneg(X1, active(X2)) active(pi(X)) -> pi(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(times(X1, X2)) -> times(active(X1), X2) active(times(X1, X2)) -> times(X1, active(X2)) active(square(X)) -> square(active(X)) s(mark(X)) -> mark(s(X)) posrecip(mark(X)) -> mark(posrecip(X)) negrecip(mark(X)) -> mark(negrecip(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) cons2(X1, mark(X2)) -> mark(cons2(X1, X2)) rcons(mark(X1), X2) -> mark(rcons(X1, X2)) rcons(X1, mark(X2)) -> mark(rcons(X1, X2)) from(mark(X)) -> mark(from(X)) 2ndspos(mark(X1), X2) -> mark(2ndspos(X1, X2)) 2ndspos(X1, mark(X2)) -> mark(2ndspos(X1, X2)) 2ndsneg(mark(X1), X2) -> mark(2ndsneg(X1, X2)) 2ndsneg(X1, mark(X2)) -> mark(2ndsneg(X1, X2)) pi(mark(X)) -> mark(pi(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) times(mark(X1), X2) -> mark(times(X1, X2)) times(X1, mark(X2)) -> mark(times(X1, X2)) square(mark(X)) -> mark(square(X)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(posrecip(X)) -> posrecip(proper(X)) proper(negrecip(X)) -> negrecip(proper(X)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(cons2(X1, X2)) -> cons2(proper(X1), proper(X2)) proper(rnil) -> ok(rnil) proper(rcons(X1, X2)) -> rcons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(2ndspos(X1, X2)) -> 2ndspos(proper(X1), proper(X2)) proper(2ndsneg(X1, X2)) -> 2ndsneg(proper(X1), proper(X2)) proper(pi(X)) -> pi(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(times(X1, X2)) -> times(proper(X1), proper(X2)) proper(square(X)) -> square(proper(X)) s(ok(X)) -> ok(s(X)) posrecip(ok(X)) -> ok(posrecip(X)) negrecip(ok(X)) -> ok(negrecip(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) cons2(ok(X1), ok(X2)) -> ok(cons2(X1, X2)) rcons(ok(X1), ok(X2)) -> ok(rcons(X1, X2)) from(ok(X)) -> ok(from(X)) 2ndspos(ok(X1), ok(X2)) -> ok(2ndspos(X1, X2)) 2ndsneg(ok(X1), ok(X2)) -> ok(2ndsneg(X1, X2)) pi(ok(X)) -> ok(pi(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) times(ok(X1), ok(X2)) -> ok(times(X1, X2)) square(ok(X)) -> ok(square(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) The (relative) TRS S consists of the following rules: encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(0) -> 0 encArg(rnil) -> rnil encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(nil) -> nil encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_posrecip(x_1)) -> posrecip(encArg(x_1)) encArg(cons_negrecip(x_1)) -> negrecip(encArg(x_1)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_cons2(x_1, x_2)) -> cons2(encArg(x_1), encArg(x_2)) encArg(cons_rcons(x_1, x_2)) -> rcons(encArg(x_1), encArg(x_2)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_2ndspos(x_1, x_2)) -> 2ndspos(encArg(x_1), encArg(x_2)) encArg(cons_2ndsneg(x_1, x_2)) -> 2ndsneg(encArg(x_1), encArg(x_2)) encArg(cons_pi(x_1)) -> pi(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_square(x_1)) -> square(encArg(x_1)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_from(x_1) -> from(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_2ndspos(x_1, x_2) -> 2ndspos(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_rnil -> rnil encode_cons2(x_1, x_2) -> cons2(encArg(x_1), encArg(x_2)) encode_rcons(x_1, x_2) -> rcons(encArg(x_1), encArg(x_2)) encode_posrecip(x_1) -> posrecip(encArg(x_1)) encode_2ndsneg(x_1, x_2) -> 2ndsneg(encArg(x_1), encArg(x_2)) encode_negrecip(x_1) -> negrecip(encArg(x_1)) encode_pi(x_1) -> pi(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_square(x_1) -> square(encArg(x_1)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_nil -> nil encode_top(x_1) -> top(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(2ndspos(0, Z)) -> mark(rnil) active(2ndspos(s(N), cons(X, Z))) -> mark(2ndspos(s(N), cons2(X, Z))) active(2ndspos(s(N), cons2(X, cons(Y, Z)))) -> mark(rcons(posrecip(Y), 2ndsneg(N, Z))) active(2ndsneg(0, Z)) -> mark(rnil) active(2ndsneg(s(N), cons(X, Z))) -> mark(2ndsneg(s(N), cons2(X, Z))) active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) -> mark(rcons(negrecip(Y), 2ndspos(N, Z))) active(pi(X)) -> mark(2ndspos(X, from(0))) active(plus(0, Y)) -> mark(Y) active(plus(s(X), Y)) -> mark(s(plus(X, Y))) active(times(0, Y)) -> mark(0) active(times(s(X), Y)) -> mark(plus(Y, times(X, Y))) active(square(X)) -> mark(times(X, X)) active(s(X)) -> s(active(X)) active(posrecip(X)) -> posrecip(active(X)) active(negrecip(X)) -> negrecip(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(cons2(X1, X2)) -> cons2(X1, active(X2)) active(rcons(X1, X2)) -> rcons(active(X1), X2) active(rcons(X1, X2)) -> rcons(X1, active(X2)) active(from(X)) -> from(active(X)) active(2ndspos(X1, X2)) -> 2ndspos(active(X1), X2) active(2ndspos(X1, X2)) -> 2ndspos(X1, active(X2)) active(2ndsneg(X1, X2)) -> 2ndsneg(active(X1), X2) active(2ndsneg(X1, X2)) -> 2ndsneg(X1, active(X2)) active(pi(X)) -> pi(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(times(X1, X2)) -> times(active(X1), X2) active(times(X1, X2)) -> times(X1, active(X2)) active(square(X)) -> square(active(X)) s(mark(X)) -> mark(s(X)) posrecip(mark(X)) -> mark(posrecip(X)) negrecip(mark(X)) -> mark(negrecip(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) cons2(X1, mark(X2)) -> mark(cons2(X1, X2)) rcons(mark(X1), X2) -> mark(rcons(X1, X2)) rcons(X1, mark(X2)) -> mark(rcons(X1, X2)) from(mark(X)) -> mark(from(X)) 2ndspos(mark(X1), X2) -> mark(2ndspos(X1, X2)) 2ndspos(X1, mark(X2)) -> mark(2ndspos(X1, X2)) 2ndsneg(mark(X1), X2) -> mark(2ndsneg(X1, X2)) 2ndsneg(X1, mark(X2)) -> mark(2ndsneg(X1, X2)) pi(mark(X)) -> mark(pi(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) times(mark(X1), X2) -> mark(times(X1, X2)) times(X1, mark(X2)) -> mark(times(X1, X2)) square(mark(X)) -> mark(square(X)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(posrecip(X)) -> posrecip(proper(X)) proper(negrecip(X)) -> negrecip(proper(X)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(cons2(X1, X2)) -> cons2(proper(X1), proper(X2)) proper(rnil) -> ok(rnil) proper(rcons(X1, X2)) -> rcons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(2ndspos(X1, X2)) -> 2ndspos(proper(X1), proper(X2)) proper(2ndsneg(X1, X2)) -> 2ndsneg(proper(X1), proper(X2)) proper(pi(X)) -> pi(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(times(X1, X2)) -> times(proper(X1), proper(X2)) proper(square(X)) -> square(proper(X)) s(ok(X)) -> ok(s(X)) posrecip(ok(X)) -> ok(posrecip(X)) negrecip(ok(X)) -> ok(negrecip(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) cons2(ok(X1), ok(X2)) -> ok(cons2(X1, X2)) rcons(ok(X1), ok(X2)) -> ok(rcons(X1, X2)) from(ok(X)) -> ok(from(X)) 2ndspos(ok(X1), ok(X2)) -> ok(2ndspos(X1, X2)) 2ndsneg(ok(X1), ok(X2)) -> ok(2ndsneg(X1, X2)) pi(ok(X)) -> ok(pi(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) times(ok(X1), ok(X2)) -> ok(times(X1, X2)) square(ok(X)) -> ok(square(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) The (relative) TRS S consists of the following rules: encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(0) -> 0 encArg(rnil) -> rnil encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(nil) -> nil encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_posrecip(x_1)) -> posrecip(encArg(x_1)) encArg(cons_negrecip(x_1)) -> negrecip(encArg(x_1)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_cons2(x_1, x_2)) -> cons2(encArg(x_1), encArg(x_2)) encArg(cons_rcons(x_1, x_2)) -> rcons(encArg(x_1), encArg(x_2)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_2ndspos(x_1, x_2)) -> 2ndspos(encArg(x_1), encArg(x_2)) encArg(cons_2ndsneg(x_1, x_2)) -> 2ndsneg(encArg(x_1), encArg(x_2)) encArg(cons_pi(x_1)) -> pi(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_square(x_1)) -> square(encArg(x_1)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_from(x_1) -> from(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_2ndspos(x_1, x_2) -> 2ndspos(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_rnil -> rnil encode_cons2(x_1, x_2) -> cons2(encArg(x_1), encArg(x_2)) encode_rcons(x_1, x_2) -> rcons(encArg(x_1), encArg(x_2)) encode_posrecip(x_1) -> posrecip(encArg(x_1)) encode_2ndsneg(x_1, x_2) -> 2ndsneg(encArg(x_1), encArg(x_2)) encode_negrecip(x_1) -> negrecip(encArg(x_1)) encode_pi(x_1) -> pi(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_square(x_1) -> square(encArg(x_1)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_nil -> nil encode_top(x_1) -> top(encArg(x_1)) Rewrite Strategy: INNERMOST