/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 337 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 6 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) active(app(X1, X2)) -> app(active(X1), X2) active(app(X1, X2)) -> app(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(zWadr(X1, X2)) -> zWadr(active(X1), X2) active(zWadr(X1, X2)) -> zWadr(X1, active(X2)) active(prefix(X)) -> prefix(active(X)) app(mark(X1), X2) -> mark(app(X1, X2)) app(X1, mark(X2)) -> mark(app(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) zWadr(mark(X1), X2) -> mark(zWadr(X1, X2)) zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2)) prefix(mark(X)) -> mark(prefix(X)) proper(app(X1, X2)) -> app(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2)) proper(prefix(X)) -> prefix(proper(X)) app(ok(X1), ok(X2)) -> ok(app(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2)) prefix(ok(X)) -> ok(prefix(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(nil) -> nil encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_zWadr(x_1, x_2)) -> zWadr(encArg(x_1), encArg(x_2)) encArg(cons_prefix(x_1)) -> prefix(encArg(x_1)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_mark(x_1) -> mark(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_from(x_1) -> from(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_zWadr(x_1, x_2) -> zWadr(encArg(x_1), encArg(x_2)) encode_prefix(x_1) -> prefix(encArg(x_1)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_top(x_1) -> top(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) active(app(X1, X2)) -> app(active(X1), X2) active(app(X1, X2)) -> app(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(zWadr(X1, X2)) -> zWadr(active(X1), X2) active(zWadr(X1, X2)) -> zWadr(X1, active(X2)) active(prefix(X)) -> prefix(active(X)) app(mark(X1), X2) -> mark(app(X1, X2)) app(X1, mark(X2)) -> mark(app(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) zWadr(mark(X1), X2) -> mark(zWadr(X1, X2)) zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2)) prefix(mark(X)) -> mark(prefix(X)) proper(app(X1, X2)) -> app(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2)) proper(prefix(X)) -> prefix(proper(X)) app(ok(X1), ok(X2)) -> ok(app(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2)) prefix(ok(X)) -> ok(prefix(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_zWadr(x_1, x_2)) -> zWadr(encArg(x_1), encArg(x_2)) encArg(cons_prefix(x_1)) -> prefix(encArg(x_1)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_mark(x_1) -> mark(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_from(x_1) -> from(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_zWadr(x_1, x_2) -> zWadr(encArg(x_1), encArg(x_2)) encode_prefix(x_1) -> prefix(encArg(x_1)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_top(x_1) -> top(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) active(app(X1, X2)) -> app(active(X1), X2) active(app(X1, X2)) -> app(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(zWadr(X1, X2)) -> zWadr(active(X1), X2) active(zWadr(X1, X2)) -> zWadr(X1, active(X2)) active(prefix(X)) -> prefix(active(X)) app(mark(X1), X2) -> mark(app(X1, X2)) app(X1, mark(X2)) -> mark(app(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) zWadr(mark(X1), X2) -> mark(zWadr(X1, X2)) zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2)) prefix(mark(X)) -> mark(prefix(X)) proper(app(X1, X2)) -> app(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2)) proper(prefix(X)) -> prefix(proper(X)) app(ok(X1), ok(X2)) -> ok(app(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2)) prefix(ok(X)) -> ok(prefix(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_zWadr(x_1, x_2)) -> zWadr(encArg(x_1), encArg(x_2)) encArg(cons_prefix(x_1)) -> prefix(encArg(x_1)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_mark(x_1) -> mark(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_from(x_1) -> from(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_zWadr(x_1, x_2) -> zWadr(encArg(x_1), encArg(x_2)) encode_prefix(x_1) -> prefix(encArg(x_1)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_top(x_1) -> top(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) active(app(X1, X2)) -> app(active(X1), X2) active(app(X1, X2)) -> app(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(zWadr(X1, X2)) -> zWadr(active(X1), X2) active(zWadr(X1, X2)) -> zWadr(X1, active(X2)) active(prefix(X)) -> prefix(active(X)) app(mark(X1), X2) -> mark(app(X1, X2)) app(X1, mark(X2)) -> mark(app(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) zWadr(mark(X1), X2) -> mark(zWadr(X1, X2)) zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2)) prefix(mark(X)) -> mark(prefix(X)) proper(app(X1, X2)) -> app(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2)) proper(prefix(X)) -> prefix(proper(X)) app(ok(X1), ok(X2)) -> ok(app(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2)) prefix(ok(X)) -> ok(prefix(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_zWadr(x_1, x_2)) -> zWadr(encArg(x_1), encArg(x_2)) encArg(cons_prefix(x_1)) -> prefix(encArg(x_1)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_mark(x_1) -> mark(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_from(x_1) -> from(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_zWadr(x_1, x_2) -> zWadr(encArg(x_1), encArg(x_2)) encode_prefix(x_1) -> prefix(encArg(x_1)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_top(x_1) -> top(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence zWadr(mark(X1), X2) ->^+ mark(zWadr(X1, X2)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X1 / mark(X1)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) active(app(X1, X2)) -> app(active(X1), X2) active(app(X1, X2)) -> app(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(zWadr(X1, X2)) -> zWadr(active(X1), X2) active(zWadr(X1, X2)) -> zWadr(X1, active(X2)) active(prefix(X)) -> prefix(active(X)) app(mark(X1), X2) -> mark(app(X1, X2)) app(X1, mark(X2)) -> mark(app(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) zWadr(mark(X1), X2) -> mark(zWadr(X1, X2)) zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2)) prefix(mark(X)) -> mark(prefix(X)) proper(app(X1, X2)) -> app(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2)) proper(prefix(X)) -> prefix(proper(X)) app(ok(X1), ok(X2)) -> ok(app(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2)) prefix(ok(X)) -> ok(prefix(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_zWadr(x_1, x_2)) -> zWadr(encArg(x_1), encArg(x_2)) encArg(cons_prefix(x_1)) -> prefix(encArg(x_1)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_mark(x_1) -> mark(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_from(x_1) -> from(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_zWadr(x_1, x_2) -> zWadr(encArg(x_1), encArg(x_2)) encode_prefix(x_1) -> prefix(encArg(x_1)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_top(x_1) -> top(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) active(app(X1, X2)) -> app(active(X1), X2) active(app(X1, X2)) -> app(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(zWadr(X1, X2)) -> zWadr(active(X1), X2) active(zWadr(X1, X2)) -> zWadr(X1, active(X2)) active(prefix(X)) -> prefix(active(X)) app(mark(X1), X2) -> mark(app(X1, X2)) app(X1, mark(X2)) -> mark(app(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) zWadr(mark(X1), X2) -> mark(zWadr(X1, X2)) zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2)) prefix(mark(X)) -> mark(prefix(X)) proper(app(X1, X2)) -> app(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2)) proper(prefix(X)) -> prefix(proper(X)) app(ok(X1), ok(X2)) -> ok(app(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2)) prefix(ok(X)) -> ok(prefix(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_zWadr(x_1, x_2)) -> zWadr(encArg(x_1), encArg(x_2)) encArg(cons_prefix(x_1)) -> prefix(encArg(x_1)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_mark(x_1) -> mark(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_from(x_1) -> from(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_zWadr(x_1, x_2) -> zWadr(encArg(x_1), encArg(x_2)) encode_prefix(x_1) -> prefix(encArg(x_1)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_top(x_1) -> top(encArg(x_1)) Rewrite Strategy: INNERMOST