/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 227 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (12) CdtProblem (13) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 104 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 42 ms] (18) CdtProblem (19) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 41 ms] (20) CdtProblem (21) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 10 ms] (22) CdtProblem (23) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CdtProblem (25) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (26) CdtProblem (27) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 20 ms] (28) CdtProblem (29) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (30) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: 2nd(cons1(X, cons(Y, Z))) -> Y 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1))) from(X) -> cons(X, n__from(s(X))) from(X) -> n__from(X) activate(n__from(X)) -> from(X) activate(X) -> X S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(cons1(x_1, x_2)) -> cons1(encArg(x_1), encArg(x_2)) encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(n__from(x_1)) -> n__from(encArg(x_1)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_2nd(x_1)) -> 2nd(encArg(x_1)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_2nd(x_1) -> 2nd(encArg(x_1)) encode_cons1(x_1, x_2) -> cons1(encArg(x_1), encArg(x_2)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_activate(x_1) -> activate(encArg(x_1)) encode_from(x_1) -> from(encArg(x_1)) encode_n__from(x_1) -> n__from(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: 2nd(cons1(X, cons(Y, Z))) -> Y 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1))) from(X) -> cons(X, n__from(s(X))) from(X) -> n__from(X) activate(n__from(X)) -> from(X) activate(X) -> X The (relative) TRS S consists of the following rules: encArg(cons1(x_1, x_2)) -> cons1(encArg(x_1), encArg(x_2)) encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(n__from(x_1)) -> n__from(encArg(x_1)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_2nd(x_1)) -> 2nd(encArg(x_1)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_2nd(x_1) -> 2nd(encArg(x_1)) encode_cons1(x_1, x_2) -> cons1(encArg(x_1), encArg(x_2)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_activate(x_1) -> activate(encArg(x_1)) encode_from(x_1) -> from(encArg(x_1)) encode_n__from(x_1) -> n__from(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: 2nd(cons1(X, cons(Y, Z))) -> Y 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1))) from(X) -> cons(X, n__from(s(X))) from(X) -> n__from(X) activate(n__from(X)) -> from(X) activate(X) -> X The (relative) TRS S consists of the following rules: encArg(cons1(x_1, x_2)) -> cons1(encArg(x_1), encArg(x_2)) encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(n__from(x_1)) -> n__from(encArg(x_1)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_2nd(x_1)) -> 2nd(encArg(x_1)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_2nd(x_1) -> 2nd(encArg(x_1)) encode_cons1(x_1, x_2) -> cons1(encArg(x_1), encArg(x_2)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_activate(x_1) -> activate(encArg(x_1)) encode_from(x_1) -> from(encArg(x_1)) encode_n__from(x_1) -> n__from(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons1(z0, z1)) -> cons1(encArg(z0), encArg(z1)) encArg(cons(z0, z1)) -> cons(encArg(z0), encArg(z1)) encArg(n__from(z0)) -> n__from(encArg(z0)) encArg(s(z0)) -> s(encArg(z0)) encArg(cons_2nd(z0)) -> 2nd(encArg(z0)) encArg(cons_from(z0)) -> from(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) encode_2nd(z0) -> 2nd(encArg(z0)) encode_cons1(z0, z1) -> cons1(encArg(z0), encArg(z1)) encode_cons(z0, z1) -> cons(encArg(z0), encArg(z1)) encode_activate(z0) -> activate(encArg(z0)) encode_from(z0) -> from(encArg(z0)) encode_n__from(z0) -> n__from(encArg(z0)) encode_s(z0) -> s(encArg(z0)) 2nd(cons1(z0, cons(z1, z2))) -> z1 2nd(cons(z0, z1)) -> 2nd(cons1(z0, activate(z1))) from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) activate(n__from(z0)) -> from(z0) activate(z0) -> z0 Tuples: ENCARG(cons1(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(n__from(z0)) -> c2(ENCARG(z0)) ENCARG(s(z0)) -> c3(ENCARG(z0)) ENCARG(cons_2nd(z0)) -> c4(2ND(encArg(z0)), ENCARG(z0)) ENCARG(cons_from(z0)) -> c5(FROM(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c6(ACTIVATE(encArg(z0)), ENCARG(z0)) ENCODE_2ND(z0) -> c7(2ND(encArg(z0)), ENCARG(z0)) ENCODE_CONS1(z0, z1) -> c8(ENCARG(z0), ENCARG(z1)) ENCODE_CONS(z0, z1) -> c9(ENCARG(z0), ENCARG(z1)) ENCODE_ACTIVATE(z0) -> c10(ACTIVATE(encArg(z0)), ENCARG(z0)) ENCODE_FROM(z0) -> c11(FROM(encArg(z0)), ENCARG(z0)) ENCODE_N__FROM(z0) -> c12(ENCARG(z0)) ENCODE_S(z0) -> c13(ENCARG(z0)) 2ND(cons1(z0, cons(z1, z2))) -> c14 2ND(cons(z0, z1)) -> c15(2ND(cons1(z0, activate(z1))), ACTIVATE(z1)) FROM(z0) -> c16 FROM(z0) -> c17 ACTIVATE(n__from(z0)) -> c18(FROM(z0)) ACTIVATE(z0) -> c19 S tuples: 2ND(cons1(z0, cons(z1, z2))) -> c14 2ND(cons(z0, z1)) -> c15(2ND(cons1(z0, activate(z1))), ACTIVATE(z1)) FROM(z0) -> c16 FROM(z0) -> c17 ACTIVATE(n__from(z0)) -> c18(FROM(z0)) ACTIVATE(z0) -> c19 K tuples:none Defined Rule Symbols: 2nd_1, from_1, activate_1, encArg_1, encode_2nd_1, encode_cons1_2, encode_cons_2, encode_activate_1, encode_from_1, encode_n__from_1, encode_s_1 Defined Pair Symbols: ENCARG_1, ENCODE_2ND_1, ENCODE_CONS1_2, ENCODE_CONS_2, ENCODE_ACTIVATE_1, ENCODE_FROM_1, ENCODE_N__FROM_1, ENCODE_S_1, 2ND_1, FROM_1, ACTIVATE_1 Compound Symbols: c_2, c1_2, c2_1, c3_1, c4_2, c5_2, c6_2, c7_2, c8_2, c9_2, c10_2, c11_2, c12_1, c13_1, c14, c15_2, c16, c17, c18_1, c19 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 4 leading nodes: ENCODE_CONS1(z0, z1) -> c8(ENCARG(z0), ENCARG(z1)) ENCODE_CONS(z0, z1) -> c9(ENCARG(z0), ENCARG(z1)) ENCODE_N__FROM(z0) -> c12(ENCARG(z0)) ENCODE_S(z0) -> c13(ENCARG(z0)) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons1(z0, z1)) -> cons1(encArg(z0), encArg(z1)) encArg(cons(z0, z1)) -> cons(encArg(z0), encArg(z1)) encArg(n__from(z0)) -> n__from(encArg(z0)) encArg(s(z0)) -> s(encArg(z0)) encArg(cons_2nd(z0)) -> 2nd(encArg(z0)) encArg(cons_from(z0)) -> from(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) encode_2nd(z0) -> 2nd(encArg(z0)) encode_cons1(z0, z1) -> cons1(encArg(z0), encArg(z1)) encode_cons(z0, z1) -> cons(encArg(z0), encArg(z1)) encode_activate(z0) -> activate(encArg(z0)) encode_from(z0) -> from(encArg(z0)) encode_n__from(z0) -> n__from(encArg(z0)) encode_s(z0) -> s(encArg(z0)) 2nd(cons1(z0, cons(z1, z2))) -> z1 2nd(cons(z0, z1)) -> 2nd(cons1(z0, activate(z1))) from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) activate(n__from(z0)) -> from(z0) activate(z0) -> z0 Tuples: ENCARG(cons1(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(n__from(z0)) -> c2(ENCARG(z0)) ENCARG(s(z0)) -> c3(ENCARG(z0)) ENCARG(cons_2nd(z0)) -> c4(2ND(encArg(z0)), ENCARG(z0)) ENCARG(cons_from(z0)) -> c5(FROM(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c6(ACTIVATE(encArg(z0)), ENCARG(z0)) ENCODE_2ND(z0) -> c7(2ND(encArg(z0)), ENCARG(z0)) ENCODE_ACTIVATE(z0) -> c10(ACTIVATE(encArg(z0)), ENCARG(z0)) ENCODE_FROM(z0) -> c11(FROM(encArg(z0)), ENCARG(z0)) 2ND(cons1(z0, cons(z1, z2))) -> c14 2ND(cons(z0, z1)) -> c15(2ND(cons1(z0, activate(z1))), ACTIVATE(z1)) FROM(z0) -> c16 FROM(z0) -> c17 ACTIVATE(n__from(z0)) -> c18(FROM(z0)) ACTIVATE(z0) -> c19 S tuples: 2ND(cons1(z0, cons(z1, z2))) -> c14 2ND(cons(z0, z1)) -> c15(2ND(cons1(z0, activate(z1))), ACTIVATE(z1)) FROM(z0) -> c16 FROM(z0) -> c17 ACTIVATE(n__from(z0)) -> c18(FROM(z0)) ACTIVATE(z0) -> c19 K tuples:none Defined Rule Symbols: 2nd_1, from_1, activate_1, encArg_1, encode_2nd_1, encode_cons1_2, encode_cons_2, encode_activate_1, encode_from_1, encode_n__from_1, encode_s_1 Defined Pair Symbols: ENCARG_1, ENCODE_2ND_1, ENCODE_ACTIVATE_1, ENCODE_FROM_1, 2ND_1, FROM_1, ACTIVATE_1 Compound Symbols: c_2, c1_2, c2_1, c3_1, c4_2, c5_2, c6_2, c7_2, c10_2, c11_2, c14, c15_2, c16, c17, c18_1, c19 ---------------------------------------- (9) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons1(z0, z1)) -> cons1(encArg(z0), encArg(z1)) encArg(cons(z0, z1)) -> cons(encArg(z0), encArg(z1)) encArg(n__from(z0)) -> n__from(encArg(z0)) encArg(s(z0)) -> s(encArg(z0)) encArg(cons_2nd(z0)) -> 2nd(encArg(z0)) encArg(cons_from(z0)) -> from(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) encode_2nd(z0) -> 2nd(encArg(z0)) encode_cons1(z0, z1) -> cons1(encArg(z0), encArg(z1)) encode_cons(z0, z1) -> cons(encArg(z0), encArg(z1)) encode_activate(z0) -> activate(encArg(z0)) encode_from(z0) -> from(encArg(z0)) encode_n__from(z0) -> n__from(encArg(z0)) encode_s(z0) -> s(encArg(z0)) 2nd(cons1(z0, cons(z1, z2))) -> z1 2nd(cons(z0, z1)) -> 2nd(cons1(z0, activate(z1))) from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) activate(n__from(z0)) -> from(z0) activate(z0) -> z0 Tuples: ENCARG(cons1(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(n__from(z0)) -> c2(ENCARG(z0)) ENCARG(s(z0)) -> c3(ENCARG(z0)) ENCARG(cons_2nd(z0)) -> c4(2ND(encArg(z0)), ENCARG(z0)) ENCARG(cons_from(z0)) -> c5(FROM(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c6(ACTIVATE(encArg(z0)), ENCARG(z0)) 2ND(cons1(z0, cons(z1, z2))) -> c14 FROM(z0) -> c16 FROM(z0) -> c17 ACTIVATE(n__from(z0)) -> c18(FROM(z0)) ACTIVATE(z0) -> c19 ENCODE_2ND(z0) -> c8(2ND(encArg(z0))) ENCODE_2ND(z0) -> c8(ENCARG(z0)) ENCODE_ACTIVATE(z0) -> c8(ACTIVATE(encArg(z0))) ENCODE_ACTIVATE(z0) -> c8(ENCARG(z0)) ENCODE_FROM(z0) -> c8(FROM(encArg(z0))) ENCODE_FROM(z0) -> c8(ENCARG(z0)) 2ND(cons(z0, z1)) -> c8(2ND(cons1(z0, activate(z1)))) 2ND(cons(z0, z1)) -> c8(ACTIVATE(z1)) S tuples: 2ND(cons1(z0, cons(z1, z2))) -> c14 FROM(z0) -> c16 FROM(z0) -> c17 ACTIVATE(n__from(z0)) -> c18(FROM(z0)) ACTIVATE(z0) -> c19 2ND(cons(z0, z1)) -> c8(2ND(cons1(z0, activate(z1)))) 2ND(cons(z0, z1)) -> c8(ACTIVATE(z1)) K tuples:none Defined Rule Symbols: 2nd_1, from_1, activate_1, encArg_1, encode_2nd_1, encode_cons1_2, encode_cons_2, encode_activate_1, encode_from_1, encode_n__from_1, encode_s_1 Defined Pair Symbols: ENCARG_1, 2ND_1, FROM_1, ACTIVATE_1, ENCODE_2ND_1, ENCODE_ACTIVATE_1, ENCODE_FROM_1 Compound Symbols: c_2, c1_2, c2_1, c3_1, c4_2, c5_2, c6_2, c14, c16, c17, c18_1, c19, c8_1 ---------------------------------------- (11) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 3 leading nodes: ENCODE_2ND(z0) -> c8(ENCARG(z0)) ENCODE_ACTIVATE(z0) -> c8(ENCARG(z0)) ENCODE_FROM(z0) -> c8(ENCARG(z0)) ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons1(z0, z1)) -> cons1(encArg(z0), encArg(z1)) encArg(cons(z0, z1)) -> cons(encArg(z0), encArg(z1)) encArg(n__from(z0)) -> n__from(encArg(z0)) encArg(s(z0)) -> s(encArg(z0)) encArg(cons_2nd(z0)) -> 2nd(encArg(z0)) encArg(cons_from(z0)) -> from(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) encode_2nd(z0) -> 2nd(encArg(z0)) encode_cons1(z0, z1) -> cons1(encArg(z0), encArg(z1)) encode_cons(z0, z1) -> cons(encArg(z0), encArg(z1)) encode_activate(z0) -> activate(encArg(z0)) encode_from(z0) -> from(encArg(z0)) encode_n__from(z0) -> n__from(encArg(z0)) encode_s(z0) -> s(encArg(z0)) 2nd(cons1(z0, cons(z1, z2))) -> z1 2nd(cons(z0, z1)) -> 2nd(cons1(z0, activate(z1))) from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) activate(n__from(z0)) -> from(z0) activate(z0) -> z0 Tuples: ENCARG(cons1(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(n__from(z0)) -> c2(ENCARG(z0)) ENCARG(s(z0)) -> c3(ENCARG(z0)) ENCARG(cons_2nd(z0)) -> c4(2ND(encArg(z0)), ENCARG(z0)) ENCARG(cons_from(z0)) -> c5(FROM(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c6(ACTIVATE(encArg(z0)), ENCARG(z0)) 2ND(cons1(z0, cons(z1, z2))) -> c14 FROM(z0) -> c16 FROM(z0) -> c17 ACTIVATE(n__from(z0)) -> c18(FROM(z0)) ACTIVATE(z0) -> c19 ENCODE_2ND(z0) -> c8(2ND(encArg(z0))) ENCODE_ACTIVATE(z0) -> c8(ACTIVATE(encArg(z0))) ENCODE_FROM(z0) -> c8(FROM(encArg(z0))) 2ND(cons(z0, z1)) -> c8(2ND(cons1(z0, activate(z1)))) 2ND(cons(z0, z1)) -> c8(ACTIVATE(z1)) S tuples: 2ND(cons1(z0, cons(z1, z2))) -> c14 FROM(z0) -> c16 FROM(z0) -> c17 ACTIVATE(n__from(z0)) -> c18(FROM(z0)) ACTIVATE(z0) -> c19 2ND(cons(z0, z1)) -> c8(2ND(cons1(z0, activate(z1)))) 2ND(cons(z0, z1)) -> c8(ACTIVATE(z1)) K tuples:none Defined Rule Symbols: 2nd_1, from_1, activate_1, encArg_1, encode_2nd_1, encode_cons1_2, encode_cons_2, encode_activate_1, encode_from_1, encode_n__from_1, encode_s_1 Defined Pair Symbols: ENCARG_1, 2ND_1, FROM_1, ACTIVATE_1, ENCODE_2ND_1, ENCODE_ACTIVATE_1, ENCODE_FROM_1 Compound Symbols: c_2, c1_2, c2_1, c3_1, c4_2, c5_2, c6_2, c14, c16, c17, c18_1, c19, c8_1 ---------------------------------------- (13) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_2nd(z0) -> 2nd(encArg(z0)) encode_cons1(z0, z1) -> cons1(encArg(z0), encArg(z1)) encode_cons(z0, z1) -> cons(encArg(z0), encArg(z1)) encode_activate(z0) -> activate(encArg(z0)) encode_from(z0) -> from(encArg(z0)) encode_n__from(z0) -> n__from(encArg(z0)) encode_s(z0) -> s(encArg(z0)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons1(z0, z1)) -> cons1(encArg(z0), encArg(z1)) encArg(cons(z0, z1)) -> cons(encArg(z0), encArg(z1)) encArg(n__from(z0)) -> n__from(encArg(z0)) encArg(s(z0)) -> s(encArg(z0)) encArg(cons_2nd(z0)) -> 2nd(encArg(z0)) encArg(cons_from(z0)) -> from(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) 2nd(cons1(z0, cons(z1, z2))) -> z1 2nd(cons(z0, z1)) -> 2nd(cons1(z0, activate(z1))) from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) activate(n__from(z0)) -> from(z0) activate(z0) -> z0 Tuples: ENCARG(cons1(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(n__from(z0)) -> c2(ENCARG(z0)) ENCARG(s(z0)) -> c3(ENCARG(z0)) ENCARG(cons_2nd(z0)) -> c4(2ND(encArg(z0)), ENCARG(z0)) ENCARG(cons_from(z0)) -> c5(FROM(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c6(ACTIVATE(encArg(z0)), ENCARG(z0)) 2ND(cons1(z0, cons(z1, z2))) -> c14 FROM(z0) -> c16 FROM(z0) -> c17 ACTIVATE(n__from(z0)) -> c18(FROM(z0)) ACTIVATE(z0) -> c19 ENCODE_2ND(z0) -> c8(2ND(encArg(z0))) ENCODE_ACTIVATE(z0) -> c8(ACTIVATE(encArg(z0))) ENCODE_FROM(z0) -> c8(FROM(encArg(z0))) 2ND(cons(z0, z1)) -> c8(2ND(cons1(z0, activate(z1)))) 2ND(cons(z0, z1)) -> c8(ACTIVATE(z1)) S tuples: 2ND(cons1(z0, cons(z1, z2))) -> c14 FROM(z0) -> c16 FROM(z0) -> c17 ACTIVATE(n__from(z0)) -> c18(FROM(z0)) ACTIVATE(z0) -> c19 2ND(cons(z0, z1)) -> c8(2ND(cons1(z0, activate(z1)))) 2ND(cons(z0, z1)) -> c8(ACTIVATE(z1)) K tuples:none Defined Rule Symbols: encArg_1, 2nd_1, from_1, activate_1 Defined Pair Symbols: ENCARG_1, 2ND_1, FROM_1, ACTIVATE_1, ENCODE_2ND_1, ENCODE_ACTIVATE_1, ENCODE_FROM_1 Compound Symbols: c_2, c1_2, c2_1, c3_1, c4_2, c5_2, c6_2, c14, c16, c17, c18_1, c19, c8_1 ---------------------------------------- (15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. 2ND(cons1(z0, cons(z1, z2))) -> c14 FROM(z0) -> c16 FROM(z0) -> c17 ACTIVATE(z0) -> c19 We considered the (Usable) Rules:none And the Tuples: ENCARG(cons1(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(n__from(z0)) -> c2(ENCARG(z0)) ENCARG(s(z0)) -> c3(ENCARG(z0)) ENCARG(cons_2nd(z0)) -> c4(2ND(encArg(z0)), ENCARG(z0)) ENCARG(cons_from(z0)) -> c5(FROM(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c6(ACTIVATE(encArg(z0)), ENCARG(z0)) 2ND(cons1(z0, cons(z1, z2))) -> c14 FROM(z0) -> c16 FROM(z0) -> c17 ACTIVATE(n__from(z0)) -> c18(FROM(z0)) ACTIVATE(z0) -> c19 ENCODE_2ND(z0) -> c8(2ND(encArg(z0))) ENCODE_ACTIVATE(z0) -> c8(ACTIVATE(encArg(z0))) ENCODE_FROM(z0) -> c8(FROM(encArg(z0))) 2ND(cons(z0, z1)) -> c8(2ND(cons1(z0, activate(z1)))) 2ND(cons(z0, z1)) -> c8(ACTIVATE(z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(2ND(x_1)) = [1] POL(2nd(x_1)) = [1] + x_1 POL(ACTIVATE(x_1)) = [1] POL(ENCARG(x_1)) = [1] + x_1 POL(ENCODE_2ND(x_1)) = [1] POL(ENCODE_ACTIVATE(x_1)) = [1] POL(ENCODE_FROM(x_1)) = [1] POL(FROM(x_1)) = [1] POL(activate(x_1)) = [1] + x_1 POL(c(x_1, x_2)) = x_1 + x_2 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c14) = 0 POL(c16) = 0 POL(c17) = 0 POL(c18(x_1)) = x_1 POL(c19) = 0 POL(c2(x_1)) = x_1 POL(c3(x_1)) = x_1 POL(c4(x_1, x_2)) = x_1 + x_2 POL(c5(x_1, x_2)) = x_1 + x_2 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c8(x_1)) = x_1 POL(cons(x_1, x_2)) = [1] + x_1 + x_2 POL(cons1(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_2nd(x_1)) = [1] + x_1 POL(cons_activate(x_1)) = [1] + x_1 POL(cons_from(x_1)) = [1] + x_1 POL(encArg(x_1)) = [1] + x_1 POL(from(x_1)) = [1] + x_1 POL(n__from(x_1)) = [1] + x_1 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons1(z0, z1)) -> cons1(encArg(z0), encArg(z1)) encArg(cons(z0, z1)) -> cons(encArg(z0), encArg(z1)) encArg(n__from(z0)) -> n__from(encArg(z0)) encArg(s(z0)) -> s(encArg(z0)) encArg(cons_2nd(z0)) -> 2nd(encArg(z0)) encArg(cons_from(z0)) -> from(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) 2nd(cons1(z0, cons(z1, z2))) -> z1 2nd(cons(z0, z1)) -> 2nd(cons1(z0, activate(z1))) from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) activate(n__from(z0)) -> from(z0) activate(z0) -> z0 Tuples: ENCARG(cons1(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(n__from(z0)) -> c2(ENCARG(z0)) ENCARG(s(z0)) -> c3(ENCARG(z0)) ENCARG(cons_2nd(z0)) -> c4(2ND(encArg(z0)), ENCARG(z0)) ENCARG(cons_from(z0)) -> c5(FROM(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c6(ACTIVATE(encArg(z0)), ENCARG(z0)) 2ND(cons1(z0, cons(z1, z2))) -> c14 FROM(z0) -> c16 FROM(z0) -> c17 ACTIVATE(n__from(z0)) -> c18(FROM(z0)) ACTIVATE(z0) -> c19 ENCODE_2ND(z0) -> c8(2ND(encArg(z0))) ENCODE_ACTIVATE(z0) -> c8(ACTIVATE(encArg(z0))) ENCODE_FROM(z0) -> c8(FROM(encArg(z0))) 2ND(cons(z0, z1)) -> c8(2ND(cons1(z0, activate(z1)))) 2ND(cons(z0, z1)) -> c8(ACTIVATE(z1)) S tuples: ACTIVATE(n__from(z0)) -> c18(FROM(z0)) 2ND(cons(z0, z1)) -> c8(2ND(cons1(z0, activate(z1)))) 2ND(cons(z0, z1)) -> c8(ACTIVATE(z1)) K tuples: 2ND(cons1(z0, cons(z1, z2))) -> c14 FROM(z0) -> c16 FROM(z0) -> c17 ACTIVATE(z0) -> c19 Defined Rule Symbols: encArg_1, 2nd_1, from_1, activate_1 Defined Pair Symbols: ENCARG_1, 2ND_1, FROM_1, ACTIVATE_1, ENCODE_2ND_1, ENCODE_ACTIVATE_1, ENCODE_FROM_1 Compound Symbols: c_2, c1_2, c2_1, c3_1, c4_2, c5_2, c6_2, c14, c16, c17, c18_1, c19, c8_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. ACTIVATE(n__from(z0)) -> c18(FROM(z0)) We considered the (Usable) Rules:none And the Tuples: ENCARG(cons1(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(n__from(z0)) -> c2(ENCARG(z0)) ENCARG(s(z0)) -> c3(ENCARG(z0)) ENCARG(cons_2nd(z0)) -> c4(2ND(encArg(z0)), ENCARG(z0)) ENCARG(cons_from(z0)) -> c5(FROM(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c6(ACTIVATE(encArg(z0)), ENCARG(z0)) 2ND(cons1(z0, cons(z1, z2))) -> c14 FROM(z0) -> c16 FROM(z0) -> c17 ACTIVATE(n__from(z0)) -> c18(FROM(z0)) ACTIVATE(z0) -> c19 ENCODE_2ND(z0) -> c8(2ND(encArg(z0))) ENCODE_ACTIVATE(z0) -> c8(ACTIVATE(encArg(z0))) ENCODE_FROM(z0) -> c8(FROM(encArg(z0))) 2ND(cons(z0, z1)) -> c8(2ND(cons1(z0, activate(z1)))) 2ND(cons(z0, z1)) -> c8(ACTIVATE(z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(2ND(x_1)) = [1] POL(2nd(x_1)) = [1] + x_1 POL(ACTIVATE(x_1)) = [1] POL(ENCARG(x_1)) = [1] + x_1 POL(ENCODE_2ND(x_1)) = [1] POL(ENCODE_ACTIVATE(x_1)) = [1] POL(ENCODE_FROM(x_1)) = 0 POL(FROM(x_1)) = 0 POL(activate(x_1)) = [1] + x_1 POL(c(x_1, x_2)) = x_1 + x_2 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c14) = 0 POL(c16) = 0 POL(c17) = 0 POL(c18(x_1)) = x_1 POL(c19) = 0 POL(c2(x_1)) = x_1 POL(c3(x_1)) = x_1 POL(c4(x_1, x_2)) = x_1 + x_2 POL(c5(x_1, x_2)) = x_1 + x_2 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c8(x_1)) = x_1 POL(cons(x_1, x_2)) = [1] + x_1 + x_2 POL(cons1(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_2nd(x_1)) = [1] + x_1 POL(cons_activate(x_1)) = [1] + x_1 POL(cons_from(x_1)) = [1] + x_1 POL(encArg(x_1)) = [1] + x_1 POL(from(x_1)) = [1] + x_1 POL(n__from(x_1)) = [1] + x_1 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons1(z0, z1)) -> cons1(encArg(z0), encArg(z1)) encArg(cons(z0, z1)) -> cons(encArg(z0), encArg(z1)) encArg(n__from(z0)) -> n__from(encArg(z0)) encArg(s(z0)) -> s(encArg(z0)) encArg(cons_2nd(z0)) -> 2nd(encArg(z0)) encArg(cons_from(z0)) -> from(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) 2nd(cons1(z0, cons(z1, z2))) -> z1 2nd(cons(z0, z1)) -> 2nd(cons1(z0, activate(z1))) from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) activate(n__from(z0)) -> from(z0) activate(z0) -> z0 Tuples: ENCARG(cons1(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(n__from(z0)) -> c2(ENCARG(z0)) ENCARG(s(z0)) -> c3(ENCARG(z0)) ENCARG(cons_2nd(z0)) -> c4(2ND(encArg(z0)), ENCARG(z0)) ENCARG(cons_from(z0)) -> c5(FROM(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c6(ACTIVATE(encArg(z0)), ENCARG(z0)) 2ND(cons1(z0, cons(z1, z2))) -> c14 FROM(z0) -> c16 FROM(z0) -> c17 ACTIVATE(n__from(z0)) -> c18(FROM(z0)) ACTIVATE(z0) -> c19 ENCODE_2ND(z0) -> c8(2ND(encArg(z0))) ENCODE_ACTIVATE(z0) -> c8(ACTIVATE(encArg(z0))) ENCODE_FROM(z0) -> c8(FROM(encArg(z0))) 2ND(cons(z0, z1)) -> c8(2ND(cons1(z0, activate(z1)))) 2ND(cons(z0, z1)) -> c8(ACTIVATE(z1)) S tuples: 2ND(cons(z0, z1)) -> c8(2ND(cons1(z0, activate(z1)))) 2ND(cons(z0, z1)) -> c8(ACTIVATE(z1)) K tuples: 2ND(cons1(z0, cons(z1, z2))) -> c14 FROM(z0) -> c16 FROM(z0) -> c17 ACTIVATE(z0) -> c19 ACTIVATE(n__from(z0)) -> c18(FROM(z0)) Defined Rule Symbols: encArg_1, 2nd_1, from_1, activate_1 Defined Pair Symbols: ENCARG_1, 2ND_1, FROM_1, ACTIVATE_1, ENCODE_2ND_1, ENCODE_ACTIVATE_1, ENCODE_FROM_1 Compound Symbols: c_2, c1_2, c2_1, c3_1, c4_2, c5_2, c6_2, c14, c16, c17, c18_1, c19, c8_1 ---------------------------------------- (19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. 2ND(cons(z0, z1)) -> c8(ACTIVATE(z1)) We considered the (Usable) Rules:none And the Tuples: ENCARG(cons1(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(n__from(z0)) -> c2(ENCARG(z0)) ENCARG(s(z0)) -> c3(ENCARG(z0)) ENCARG(cons_2nd(z0)) -> c4(2ND(encArg(z0)), ENCARG(z0)) ENCARG(cons_from(z0)) -> c5(FROM(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c6(ACTIVATE(encArg(z0)), ENCARG(z0)) 2ND(cons1(z0, cons(z1, z2))) -> c14 FROM(z0) -> c16 FROM(z0) -> c17 ACTIVATE(n__from(z0)) -> c18(FROM(z0)) ACTIVATE(z0) -> c19 ENCODE_2ND(z0) -> c8(2ND(encArg(z0))) ENCODE_ACTIVATE(z0) -> c8(ACTIVATE(encArg(z0))) ENCODE_FROM(z0) -> c8(FROM(encArg(z0))) 2ND(cons(z0, z1)) -> c8(2ND(cons1(z0, activate(z1)))) 2ND(cons(z0, z1)) -> c8(ACTIVATE(z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(2ND(x_1)) = [1] POL(2nd(x_1)) = [1] + x_1 POL(ACTIVATE(x_1)) = 0 POL(ENCARG(x_1)) = [1] + x_1 POL(ENCODE_2ND(x_1)) = [1] POL(ENCODE_ACTIVATE(x_1)) = 0 POL(ENCODE_FROM(x_1)) = 0 POL(FROM(x_1)) = 0 POL(activate(x_1)) = [1] + x_1 POL(c(x_1, x_2)) = x_1 + x_2 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c14) = 0 POL(c16) = 0 POL(c17) = 0 POL(c18(x_1)) = x_1 POL(c19) = 0 POL(c2(x_1)) = x_1 POL(c3(x_1)) = x_1 POL(c4(x_1, x_2)) = x_1 + x_2 POL(c5(x_1, x_2)) = x_1 + x_2 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c8(x_1)) = x_1 POL(cons(x_1, x_2)) = [1] + x_1 + x_2 POL(cons1(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_2nd(x_1)) = [1] + x_1 POL(cons_activate(x_1)) = [1] + x_1 POL(cons_from(x_1)) = [1] + x_1 POL(encArg(x_1)) = [1] + x_1 POL(from(x_1)) = [1] + x_1 POL(n__from(x_1)) = [1] + x_1 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons1(z0, z1)) -> cons1(encArg(z0), encArg(z1)) encArg(cons(z0, z1)) -> cons(encArg(z0), encArg(z1)) encArg(n__from(z0)) -> n__from(encArg(z0)) encArg(s(z0)) -> s(encArg(z0)) encArg(cons_2nd(z0)) -> 2nd(encArg(z0)) encArg(cons_from(z0)) -> from(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) 2nd(cons1(z0, cons(z1, z2))) -> z1 2nd(cons(z0, z1)) -> 2nd(cons1(z0, activate(z1))) from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) activate(n__from(z0)) -> from(z0) activate(z0) -> z0 Tuples: ENCARG(cons1(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(n__from(z0)) -> c2(ENCARG(z0)) ENCARG(s(z0)) -> c3(ENCARG(z0)) ENCARG(cons_2nd(z0)) -> c4(2ND(encArg(z0)), ENCARG(z0)) ENCARG(cons_from(z0)) -> c5(FROM(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c6(ACTIVATE(encArg(z0)), ENCARG(z0)) 2ND(cons1(z0, cons(z1, z2))) -> c14 FROM(z0) -> c16 FROM(z0) -> c17 ACTIVATE(n__from(z0)) -> c18(FROM(z0)) ACTIVATE(z0) -> c19 ENCODE_2ND(z0) -> c8(2ND(encArg(z0))) ENCODE_ACTIVATE(z0) -> c8(ACTIVATE(encArg(z0))) ENCODE_FROM(z0) -> c8(FROM(encArg(z0))) 2ND(cons(z0, z1)) -> c8(2ND(cons1(z0, activate(z1)))) 2ND(cons(z0, z1)) -> c8(ACTIVATE(z1)) S tuples: 2ND(cons(z0, z1)) -> c8(2ND(cons1(z0, activate(z1)))) K tuples: 2ND(cons1(z0, cons(z1, z2))) -> c14 FROM(z0) -> c16 FROM(z0) -> c17 ACTIVATE(z0) -> c19 ACTIVATE(n__from(z0)) -> c18(FROM(z0)) 2ND(cons(z0, z1)) -> c8(ACTIVATE(z1)) Defined Rule Symbols: encArg_1, 2nd_1, from_1, activate_1 Defined Pair Symbols: ENCARG_1, 2ND_1, FROM_1, ACTIVATE_1, ENCODE_2ND_1, ENCODE_ACTIVATE_1, ENCODE_FROM_1 Compound Symbols: c_2, c1_2, c2_1, c3_1, c4_2, c5_2, c6_2, c14, c16, c17, c18_1, c19, c8_1 ---------------------------------------- (21) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCARG(cons_2nd(z0)) -> c4(2ND(encArg(z0)), ENCARG(z0)) by ENCARG(cons_2nd(cons1(z0, z1))) -> c4(2ND(cons1(encArg(z0), encArg(z1))), ENCARG(cons1(z0, z1))) ENCARG(cons_2nd(cons(z0, z1))) -> c4(2ND(cons(encArg(z0), encArg(z1))), ENCARG(cons(z0, z1))) ENCARG(cons_2nd(n__from(z0))) -> c4(2ND(n__from(encArg(z0))), ENCARG(n__from(z0))) ENCARG(cons_2nd(s(z0))) -> c4(2ND(s(encArg(z0))), ENCARG(s(z0))) ENCARG(cons_2nd(cons_2nd(z0))) -> c4(2ND(2nd(encArg(z0))), ENCARG(cons_2nd(z0))) ENCARG(cons_2nd(cons_from(z0))) -> c4(2ND(from(encArg(z0))), ENCARG(cons_from(z0))) ENCARG(cons_2nd(cons_activate(z0))) -> c4(2ND(activate(encArg(z0))), ENCARG(cons_activate(z0))) ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons1(z0, z1)) -> cons1(encArg(z0), encArg(z1)) encArg(cons(z0, z1)) -> cons(encArg(z0), encArg(z1)) encArg(n__from(z0)) -> n__from(encArg(z0)) encArg(s(z0)) -> s(encArg(z0)) encArg(cons_2nd(z0)) -> 2nd(encArg(z0)) encArg(cons_from(z0)) -> from(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) 2nd(cons1(z0, cons(z1, z2))) -> z1 2nd(cons(z0, z1)) -> 2nd(cons1(z0, activate(z1))) from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) activate(n__from(z0)) -> from(z0) activate(z0) -> z0 Tuples: ENCARG(cons1(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(n__from(z0)) -> c2(ENCARG(z0)) ENCARG(s(z0)) -> c3(ENCARG(z0)) ENCARG(cons_from(z0)) -> c5(FROM(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c6(ACTIVATE(encArg(z0)), ENCARG(z0)) 2ND(cons1(z0, cons(z1, z2))) -> c14 FROM(z0) -> c16 FROM(z0) -> c17 ACTIVATE(n__from(z0)) -> c18(FROM(z0)) ACTIVATE(z0) -> c19 ENCODE_2ND(z0) -> c8(2ND(encArg(z0))) ENCODE_ACTIVATE(z0) -> c8(ACTIVATE(encArg(z0))) ENCODE_FROM(z0) -> c8(FROM(encArg(z0))) 2ND(cons(z0, z1)) -> c8(2ND(cons1(z0, activate(z1)))) 2ND(cons(z0, z1)) -> c8(ACTIVATE(z1)) ENCARG(cons_2nd(cons1(z0, z1))) -> c4(2ND(cons1(encArg(z0), encArg(z1))), ENCARG(cons1(z0, z1))) ENCARG(cons_2nd(cons(z0, z1))) -> c4(2ND(cons(encArg(z0), encArg(z1))), ENCARG(cons(z0, z1))) ENCARG(cons_2nd(n__from(z0))) -> c4(2ND(n__from(encArg(z0))), ENCARG(n__from(z0))) ENCARG(cons_2nd(s(z0))) -> c4(2ND(s(encArg(z0))), ENCARG(s(z0))) ENCARG(cons_2nd(cons_2nd(z0))) -> c4(2ND(2nd(encArg(z0))), ENCARG(cons_2nd(z0))) ENCARG(cons_2nd(cons_from(z0))) -> c4(2ND(from(encArg(z0))), ENCARG(cons_from(z0))) ENCARG(cons_2nd(cons_activate(z0))) -> c4(2ND(activate(encArg(z0))), ENCARG(cons_activate(z0))) S tuples: 2ND(cons(z0, z1)) -> c8(2ND(cons1(z0, activate(z1)))) K tuples: 2ND(cons1(z0, cons(z1, z2))) -> c14 FROM(z0) -> c16 FROM(z0) -> c17 ACTIVATE(z0) -> c19 ACTIVATE(n__from(z0)) -> c18(FROM(z0)) 2ND(cons(z0, z1)) -> c8(ACTIVATE(z1)) Defined Rule Symbols: encArg_1, 2nd_1, from_1, activate_1 Defined Pair Symbols: ENCARG_1, 2ND_1, FROM_1, ACTIVATE_1, ENCODE_2ND_1, ENCODE_ACTIVATE_1, ENCODE_FROM_1 Compound Symbols: c_2, c1_2, c2_1, c3_1, c5_2, c6_2, c14, c16, c17, c18_1, c19, c8_1, c4_2 ---------------------------------------- (23) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 8 trailing nodes: 2ND(cons1(z0, cons(z1, z2))) -> c14 FROM(z0) -> c16 2ND(cons(z0, z1)) -> c8(ACTIVATE(z1)) FROM(z0) -> c17 ACTIVATE(z0) -> c19 ENCODE_FROM(z0) -> c8(FROM(encArg(z0))) ACTIVATE(n__from(z0)) -> c18(FROM(z0)) ENCODE_ACTIVATE(z0) -> c8(ACTIVATE(encArg(z0))) ---------------------------------------- (24) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons1(z0, z1)) -> cons1(encArg(z0), encArg(z1)) encArg(cons(z0, z1)) -> cons(encArg(z0), encArg(z1)) encArg(n__from(z0)) -> n__from(encArg(z0)) encArg(s(z0)) -> s(encArg(z0)) encArg(cons_2nd(z0)) -> 2nd(encArg(z0)) encArg(cons_from(z0)) -> from(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) 2nd(cons1(z0, cons(z1, z2))) -> z1 2nd(cons(z0, z1)) -> 2nd(cons1(z0, activate(z1))) from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) activate(n__from(z0)) -> from(z0) activate(z0) -> z0 Tuples: ENCARG(cons1(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(n__from(z0)) -> c2(ENCARG(z0)) ENCARG(s(z0)) -> c3(ENCARG(z0)) ENCARG(cons_from(z0)) -> c5(FROM(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c6(ACTIVATE(encArg(z0)), ENCARG(z0)) ENCODE_2ND(z0) -> c8(2ND(encArg(z0))) 2ND(cons(z0, z1)) -> c8(2ND(cons1(z0, activate(z1)))) ENCARG(cons_2nd(cons1(z0, z1))) -> c4(2ND(cons1(encArg(z0), encArg(z1))), ENCARG(cons1(z0, z1))) ENCARG(cons_2nd(cons(z0, z1))) -> c4(2ND(cons(encArg(z0), encArg(z1))), ENCARG(cons(z0, z1))) ENCARG(cons_2nd(n__from(z0))) -> c4(2ND(n__from(encArg(z0))), ENCARG(n__from(z0))) ENCARG(cons_2nd(s(z0))) -> c4(2ND(s(encArg(z0))), ENCARG(s(z0))) ENCARG(cons_2nd(cons_2nd(z0))) -> c4(2ND(2nd(encArg(z0))), ENCARG(cons_2nd(z0))) ENCARG(cons_2nd(cons_from(z0))) -> c4(2ND(from(encArg(z0))), ENCARG(cons_from(z0))) ENCARG(cons_2nd(cons_activate(z0))) -> c4(2ND(activate(encArg(z0))), ENCARG(cons_activate(z0))) S tuples: 2ND(cons(z0, z1)) -> c8(2ND(cons1(z0, activate(z1)))) K tuples:none Defined Rule Symbols: encArg_1, 2nd_1, from_1, activate_1 Defined Pair Symbols: ENCARG_1, ENCODE_2ND_1, 2ND_1 Compound Symbols: c_2, c1_2, c2_1, c3_1, c5_2, c6_2, c8_1, c4_2 ---------------------------------------- (25) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 6 trailing tuple parts ---------------------------------------- (26) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons1(z0, z1)) -> cons1(encArg(z0), encArg(z1)) encArg(cons(z0, z1)) -> cons(encArg(z0), encArg(z1)) encArg(n__from(z0)) -> n__from(encArg(z0)) encArg(s(z0)) -> s(encArg(z0)) encArg(cons_2nd(z0)) -> 2nd(encArg(z0)) encArg(cons_from(z0)) -> from(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) 2nd(cons1(z0, cons(z1, z2))) -> z1 2nd(cons(z0, z1)) -> 2nd(cons1(z0, activate(z1))) from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) activate(n__from(z0)) -> from(z0) activate(z0) -> z0 Tuples: ENCARG(cons1(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(n__from(z0)) -> c2(ENCARG(z0)) ENCARG(s(z0)) -> c3(ENCARG(z0)) ENCODE_2ND(z0) -> c8(2ND(encArg(z0))) ENCARG(cons_2nd(cons(z0, z1))) -> c4(2ND(cons(encArg(z0), encArg(z1))), ENCARG(cons(z0, z1))) ENCARG(cons_2nd(cons_2nd(z0))) -> c4(2ND(2nd(encArg(z0))), ENCARG(cons_2nd(z0))) ENCARG(cons_2nd(cons_from(z0))) -> c4(2ND(from(encArg(z0))), ENCARG(cons_from(z0))) ENCARG(cons_2nd(cons_activate(z0))) -> c4(2ND(activate(encArg(z0))), ENCARG(cons_activate(z0))) ENCARG(cons_from(z0)) -> c5(ENCARG(z0)) ENCARG(cons_activate(z0)) -> c6(ENCARG(z0)) 2ND(cons(z0, z1)) -> c8 ENCARG(cons_2nd(cons1(z0, z1))) -> c4(ENCARG(cons1(z0, z1))) ENCARG(cons_2nd(n__from(z0))) -> c4(ENCARG(n__from(z0))) ENCARG(cons_2nd(s(z0))) -> c4(ENCARG(s(z0))) S tuples: 2ND(cons(z0, z1)) -> c8 K tuples:none Defined Rule Symbols: encArg_1, 2nd_1, from_1, activate_1 Defined Pair Symbols: ENCARG_1, ENCODE_2ND_1, 2ND_1 Compound Symbols: c_2, c1_2, c2_1, c3_1, c8_1, c4_2, c5_1, c6_1, c8, c4_1 ---------------------------------------- (27) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. 2ND(cons(z0, z1)) -> c8 We considered the (Usable) Rules:none And the Tuples: ENCARG(cons1(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(n__from(z0)) -> c2(ENCARG(z0)) ENCARG(s(z0)) -> c3(ENCARG(z0)) ENCODE_2ND(z0) -> c8(2ND(encArg(z0))) ENCARG(cons_2nd(cons(z0, z1))) -> c4(2ND(cons(encArg(z0), encArg(z1))), ENCARG(cons(z0, z1))) ENCARG(cons_2nd(cons_2nd(z0))) -> c4(2ND(2nd(encArg(z0))), ENCARG(cons_2nd(z0))) ENCARG(cons_2nd(cons_from(z0))) -> c4(2ND(from(encArg(z0))), ENCARG(cons_from(z0))) ENCARG(cons_2nd(cons_activate(z0))) -> c4(2ND(activate(encArg(z0))), ENCARG(cons_activate(z0))) ENCARG(cons_from(z0)) -> c5(ENCARG(z0)) ENCARG(cons_activate(z0)) -> c6(ENCARG(z0)) 2ND(cons(z0, z1)) -> c8 ENCARG(cons_2nd(cons1(z0, z1))) -> c4(ENCARG(cons1(z0, z1))) ENCARG(cons_2nd(n__from(z0))) -> c4(ENCARG(n__from(z0))) ENCARG(cons_2nd(s(z0))) -> c4(ENCARG(s(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(2ND(x_1)) = [1] POL(2nd(x_1)) = [1] + x_1 POL(ENCARG(x_1)) = [1] + x_1 POL(ENCODE_2ND(x_1)) = [1] POL(activate(x_1)) = [1] + x_1 POL(c(x_1, x_2)) = x_1 + x_2 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c2(x_1)) = x_1 POL(c3(x_1)) = x_1 POL(c4(x_1)) = x_1 POL(c4(x_1, x_2)) = x_1 + x_2 POL(c5(x_1)) = x_1 POL(c6(x_1)) = x_1 POL(c8) = 0 POL(c8(x_1)) = x_1 POL(cons(x_1, x_2)) = [1] + x_1 + x_2 POL(cons1(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_2nd(x_1)) = [1] + x_1 POL(cons_activate(x_1)) = [1] + x_1 POL(cons_from(x_1)) = [1] + x_1 POL(encArg(x_1)) = x_1 POL(from(x_1)) = [1] + x_1 POL(n__from(x_1)) = [1] + x_1 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (28) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons1(z0, z1)) -> cons1(encArg(z0), encArg(z1)) encArg(cons(z0, z1)) -> cons(encArg(z0), encArg(z1)) encArg(n__from(z0)) -> n__from(encArg(z0)) encArg(s(z0)) -> s(encArg(z0)) encArg(cons_2nd(z0)) -> 2nd(encArg(z0)) encArg(cons_from(z0)) -> from(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) 2nd(cons1(z0, cons(z1, z2))) -> z1 2nd(cons(z0, z1)) -> 2nd(cons1(z0, activate(z1))) from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) activate(n__from(z0)) -> from(z0) activate(z0) -> z0 Tuples: ENCARG(cons1(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(n__from(z0)) -> c2(ENCARG(z0)) ENCARG(s(z0)) -> c3(ENCARG(z0)) ENCODE_2ND(z0) -> c8(2ND(encArg(z0))) ENCARG(cons_2nd(cons(z0, z1))) -> c4(2ND(cons(encArg(z0), encArg(z1))), ENCARG(cons(z0, z1))) ENCARG(cons_2nd(cons_2nd(z0))) -> c4(2ND(2nd(encArg(z0))), ENCARG(cons_2nd(z0))) ENCARG(cons_2nd(cons_from(z0))) -> c4(2ND(from(encArg(z0))), ENCARG(cons_from(z0))) ENCARG(cons_2nd(cons_activate(z0))) -> c4(2ND(activate(encArg(z0))), ENCARG(cons_activate(z0))) ENCARG(cons_from(z0)) -> c5(ENCARG(z0)) ENCARG(cons_activate(z0)) -> c6(ENCARG(z0)) 2ND(cons(z0, z1)) -> c8 ENCARG(cons_2nd(cons1(z0, z1))) -> c4(ENCARG(cons1(z0, z1))) ENCARG(cons_2nd(n__from(z0))) -> c4(ENCARG(n__from(z0))) ENCARG(cons_2nd(s(z0))) -> c4(ENCARG(s(z0))) S tuples:none K tuples: 2ND(cons(z0, z1)) -> c8 Defined Rule Symbols: encArg_1, 2nd_1, from_1, activate_1 Defined Pair Symbols: ENCARG_1, ENCODE_2ND_1, 2ND_1 Compound Symbols: c_2, c1_2, c2_1, c3_1, c8_1, c4_2, c5_1, c6_1, c8, c4_1 ---------------------------------------- (29) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (30) BOUNDS(1, 1)