/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 172 ms] (4) CpxRelTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 97 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 192 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 63 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 333 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 84 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 700 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 341 ms] (42) CpxRNTS (43) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 457 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 66 ms] (48) CpxRNTS (49) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 169 ms] (52) CpxRNTS (53) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (54) CpxRNTS (55) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (56) CpxRNTS (57) IntTrsBoundProof [UPPER BOUND(ID), 209 ms] (58) CpxRNTS (59) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (60) CpxRNTS (61) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (62) CpxRNTS (63) IntTrsBoundProof [UPPER BOUND(ID), 325 ms] (64) CpxRNTS (65) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (66) CpxRNTS (67) FinalProof [FINISHED, 0 ms] (68) BOUNDS(1, n^2) (69) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (70) TRS for Loop Detection (71) DecreasingLoopProof [LOWER BOUND(ID), 8 ms] (72) BEST (73) proven lower bound (74) LowerBoundPropagationProof [FINISHED, 0 ms] (75) BOUNDS(n^1, INF) (76) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(X) mark(a) -> a mark(g(X)) -> g(mark(X)) a__f(X) -> f(X) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(f(x_1)) -> f(encArg(x_1)) encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(X) mark(a) -> a mark(g(X)) -> g(mark(X)) a__f(X) -> f(X) The (relative) TRS S consists of the following rules: encArg(f(x_1)) -> f(encArg(x_1)) encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(X) mark(a) -> a mark(g(X)) -> g(mark(X)) a__f(X) -> f(X) The (relative) TRS S consists of the following rules: encArg(f(x_1)) -> f(encArg(x_1)) encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) [1] mark(f(X)) -> a__f(X) [1] mark(a) -> a [1] mark(g(X)) -> g(mark(X)) [1] a__f(X) -> f(X) [1] encArg(f(x_1)) -> f(encArg(x_1)) [0] encArg(a) -> a [0] encArg(g(x_1)) -> g(encArg(x_1)) [0] encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) [0] encArg(cons_mark(x_1)) -> mark(encArg(x_1)) [0] encode_a__f(x_1) -> a__f(encArg(x_1)) [0] encode_f(x_1) -> f(encArg(x_1)) [0] encode_a -> a [0] encode_g(x_1) -> g(encArg(x_1)) [0] encode_mark(x_1) -> mark(encArg(x_1)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) [1] mark(f(X)) -> a__f(X) [1] mark(a) -> a [1] mark(g(X)) -> g(mark(X)) [1] a__f(X) -> f(X) [1] encArg(f(x_1)) -> f(encArg(x_1)) [0] encArg(a) -> a [0] encArg(g(x_1)) -> g(encArg(x_1)) [0] encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) [0] encArg(cons_mark(x_1)) -> mark(encArg(x_1)) [0] encode_a__f(x_1) -> a__f(encArg(x_1)) [0] encode_f(x_1) -> f(encArg(x_1)) [0] encode_a -> a [0] encode_g(x_1) -> g(encArg(x_1)) [0] encode_mark(x_1) -> mark(encArg(x_1)) [0] The TRS has the following type information: a__f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark a :: a:f:g:cons_a__f:cons_mark g :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark mark :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encArg :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark cons_a__f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark cons_mark :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_a__f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_a :: a:f:g:cons_a__f:cons_mark encode_g :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_mark :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: a__f_1 mark_1 encArg_1 encode_a__f_1 encode_f_1 encode_a encode_g_1 encode_mark_1 Due to the following rules being added: encArg(v0) -> a [0] encode_a__f(v0) -> a [0] encode_f(v0) -> a [0] encode_a -> a [0] encode_g(v0) -> a [0] encode_mark(v0) -> a [0] mark(v0) -> a [0] And the following fresh constants: none ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) [1] mark(f(X)) -> a__f(X) [1] mark(a) -> a [1] mark(g(X)) -> g(mark(X)) [1] a__f(X) -> f(X) [1] encArg(f(x_1)) -> f(encArg(x_1)) [0] encArg(a) -> a [0] encArg(g(x_1)) -> g(encArg(x_1)) [0] encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) [0] encArg(cons_mark(x_1)) -> mark(encArg(x_1)) [0] encode_a__f(x_1) -> a__f(encArg(x_1)) [0] encode_f(x_1) -> f(encArg(x_1)) [0] encode_a -> a [0] encode_g(x_1) -> g(encArg(x_1)) [0] encode_mark(x_1) -> mark(encArg(x_1)) [0] encArg(v0) -> a [0] encode_a__f(v0) -> a [0] encode_f(v0) -> a [0] encode_a -> a [0] encode_g(v0) -> a [0] encode_mark(v0) -> a [0] mark(v0) -> a [0] The TRS has the following type information: a__f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark a :: a:f:g:cons_a__f:cons_mark g :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark mark :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encArg :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark cons_a__f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark cons_mark :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_a__f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_a :: a:f:g:cons_a__f:cons_mark encode_g :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_mark :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) [1] mark(f(X)) -> a__f(X) [1] mark(a) -> a [1] mark(g(X)) -> g(mark(X)) [1] a__f(X) -> f(X) [1] encArg(f(x_1)) -> f(encArg(x_1)) [0] encArg(a) -> a [0] encArg(g(x_1)) -> g(encArg(x_1)) [0] encArg(cons_a__f(f(x_1'))) -> a__f(f(encArg(x_1'))) [0] encArg(cons_a__f(a)) -> a__f(a) [0] encArg(cons_a__f(g(x_1''))) -> a__f(g(encArg(x_1''))) [0] encArg(cons_a__f(cons_a__f(x_11))) -> a__f(a__f(encArg(x_11))) [0] encArg(cons_a__f(cons_mark(x_12))) -> a__f(mark(encArg(x_12))) [0] encArg(cons_a__f(x_1)) -> a__f(a) [0] encArg(cons_mark(f(x_13))) -> mark(f(encArg(x_13))) [0] encArg(cons_mark(a)) -> mark(a) [0] encArg(cons_mark(g(x_14))) -> mark(g(encArg(x_14))) [0] encArg(cons_mark(cons_a__f(x_15))) -> mark(a__f(encArg(x_15))) [0] encArg(cons_mark(cons_mark(x_16))) -> mark(mark(encArg(x_16))) [0] encArg(cons_mark(x_1)) -> mark(a) [0] encode_a__f(f(x_17)) -> a__f(f(encArg(x_17))) [0] encode_a__f(a) -> a__f(a) [0] encode_a__f(g(x_18)) -> a__f(g(encArg(x_18))) [0] encode_a__f(cons_a__f(x_19)) -> a__f(a__f(encArg(x_19))) [0] encode_a__f(cons_mark(x_110)) -> a__f(mark(encArg(x_110))) [0] encode_a__f(x_1) -> a__f(a) [0] encode_f(x_1) -> f(encArg(x_1)) [0] encode_a -> a [0] encode_g(x_1) -> g(encArg(x_1)) [0] encode_mark(f(x_111)) -> mark(f(encArg(x_111))) [0] encode_mark(a) -> mark(a) [0] encode_mark(g(x_112)) -> mark(g(encArg(x_112))) [0] encode_mark(cons_a__f(x_113)) -> mark(a__f(encArg(x_113))) [0] encode_mark(cons_mark(x_114)) -> mark(mark(encArg(x_114))) [0] encode_mark(x_1) -> mark(a) [0] encArg(v0) -> a [0] encode_a__f(v0) -> a [0] encode_f(v0) -> a [0] encode_a -> a [0] encode_g(v0) -> a [0] encode_mark(v0) -> a [0] mark(v0) -> a [0] The TRS has the following type information: a__f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark a :: a:f:g:cons_a__f:cons_mark g :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark mark :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encArg :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark cons_a__f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark cons_mark :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_a__f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_a :: a:f:g:cons_a__f:cons_mark encode_g :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_mark :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: a => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 1 }-> a__f(1 + (1 + 0)) :|: z = 1 + 0 a__f(z) -{ 1 }-> 1 + X :|: X >= 0, z = X encArg(z) -{ 0 }-> mark(mark(encArg(x_16))) :|: x_16 >= 0, z = 1 + (1 + x_16) encArg(z) -{ 0 }-> mark(a__f(encArg(x_15))) :|: x_15 >= 0, z = 1 + (1 + x_15) encArg(z) -{ 0 }-> mark(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> mark(0) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> mark(1 + encArg(x_13)) :|: z = 1 + (1 + x_13), x_13 >= 0 encArg(z) -{ 0 }-> mark(1 + encArg(x_14)) :|: x_14 >= 0, z = 1 + (1 + x_14) encArg(z) -{ 0 }-> a__f(mark(encArg(x_12))) :|: z = 1 + (1 + x_12), x_12 >= 0 encArg(z) -{ 0 }-> a__f(a__f(encArg(x_11))) :|: x_11 >= 0, z = 1 + (1 + x_11) encArg(z) -{ 0 }-> a__f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> a__f(0) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> a__f(1 + encArg(x_1')) :|: z = 1 + (1 + x_1'), x_1' >= 0 encArg(z) -{ 0 }-> a__f(1 + encArg(x_1'')) :|: z = 1 + (1 + x_1''), x_1'' >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 0 }-> a__f(mark(encArg(x_110))) :|: z = 1 + x_110, x_110 >= 0 encode_a__f(z) -{ 0 }-> a__f(a__f(encArg(x_19))) :|: z = 1 + x_19, x_19 >= 0 encode_a__f(z) -{ 0 }-> a__f(0) :|: z = 0 encode_a__f(z) -{ 0 }-> a__f(0) :|: x_1 >= 0, z = x_1 encode_a__f(z) -{ 0 }-> a__f(1 + encArg(x_17)) :|: x_17 >= 0, z = 1 + x_17 encode_a__f(z) -{ 0 }-> a__f(1 + encArg(x_18)) :|: z = 1 + x_18, x_18 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_f(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_f(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 encode_g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_g(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 encode_mark(z) -{ 0 }-> mark(mark(encArg(x_114))) :|: x_114 >= 0, z = 1 + x_114 encode_mark(z) -{ 0 }-> mark(a__f(encArg(x_113))) :|: z = 1 + x_113, x_113 >= 0 encode_mark(z) -{ 0 }-> mark(0) :|: z = 0 encode_mark(z) -{ 0 }-> mark(0) :|: x_1 >= 0, z = x_1 encode_mark(z) -{ 0 }-> mark(1 + encArg(x_111)) :|: z = 1 + x_111, x_111 >= 0 encode_mark(z) -{ 0 }-> mark(1 + encArg(x_112)) :|: z = 1 + x_112, x_112 >= 0 encode_mark(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 mark(z) -{ 1 }-> a__f(X) :|: z = 1 + X, X >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 mark(z) -{ 1 }-> 1 + mark(X) :|: z = 1 + X, X >= 0 ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 1 }-> a__f(1 + (1 + 0)) :|: z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 0 }-> mark(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> mark(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> mark(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> a__f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> a__f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 0 }-> a__f(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(0) :|: z = 0 encode_a__f(z) -{ 0 }-> a__f(0) :|: z >= 0 encode_a__f(z) -{ 0 }-> a__f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_mark(z) -{ 0 }-> mark(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(0) :|: z = 0 encode_mark(z) -{ 0 }-> mark(0) :|: z >= 0 encode_mark(z) -{ 0 }-> mark(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 1 }-> a__f(z - 1) :|: z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 1 }-> 1 + mark(z - 1) :|: z - 1 >= 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { encode_a } { a__f } { mark } { encArg } { encode_mark } { encode_g } { encode_f } { encode_a__f } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 1 }-> a__f(1 + (1 + 0)) :|: z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 0 }-> mark(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> mark(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> mark(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> a__f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> a__f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 0 }-> a__f(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(0) :|: z = 0 encode_a__f(z) -{ 0 }-> a__f(0) :|: z >= 0 encode_a__f(z) -{ 0 }-> a__f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_mark(z) -{ 0 }-> mark(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(0) :|: z = 0 encode_mark(z) -{ 0 }-> mark(0) :|: z >= 0 encode_mark(z) -{ 0 }-> mark(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 1 }-> a__f(z - 1) :|: z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 1 }-> 1 + mark(z - 1) :|: z - 1 >= 0 Function symbols to be analyzed: {encode_a}, {a__f}, {mark}, {encArg}, {encode_mark}, {encode_g}, {encode_f}, {encode_a__f} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 1 }-> a__f(1 + (1 + 0)) :|: z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 0 }-> mark(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> mark(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> mark(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> a__f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> a__f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 0 }-> a__f(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(0) :|: z = 0 encode_a__f(z) -{ 0 }-> a__f(0) :|: z >= 0 encode_a__f(z) -{ 0 }-> a__f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_mark(z) -{ 0 }-> mark(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(0) :|: z = 0 encode_mark(z) -{ 0 }-> mark(0) :|: z >= 0 encode_mark(z) -{ 0 }-> mark(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 1 }-> a__f(z - 1) :|: z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 1 }-> 1 + mark(z - 1) :|: z - 1 >= 0 Function symbols to be analyzed: {encode_a}, {a__f}, {mark}, {encArg}, {encode_mark}, {encode_g}, {encode_f}, {encode_a__f} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_a after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 1 }-> a__f(1 + (1 + 0)) :|: z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 0 }-> mark(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> mark(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> mark(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> a__f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> a__f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 0 }-> a__f(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(0) :|: z = 0 encode_a__f(z) -{ 0 }-> a__f(0) :|: z >= 0 encode_a__f(z) -{ 0 }-> a__f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_mark(z) -{ 0 }-> mark(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(0) :|: z = 0 encode_mark(z) -{ 0 }-> mark(0) :|: z >= 0 encode_mark(z) -{ 0 }-> mark(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 1 }-> a__f(z - 1) :|: z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 1 }-> 1 + mark(z - 1) :|: z - 1 >= 0 Function symbols to be analyzed: {encode_a}, {a__f}, {mark}, {encArg}, {encode_mark}, {encode_g}, {encode_f}, {encode_a__f} Previous analysis results are: encode_a: runtime: ?, size: O(1) [0] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_a after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 1 }-> a__f(1 + (1 + 0)) :|: z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 0 }-> mark(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> mark(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> mark(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> a__f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> a__f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 0 }-> a__f(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(0) :|: z = 0 encode_a__f(z) -{ 0 }-> a__f(0) :|: z >= 0 encode_a__f(z) -{ 0 }-> a__f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_mark(z) -{ 0 }-> mark(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(0) :|: z = 0 encode_mark(z) -{ 0 }-> mark(0) :|: z >= 0 encode_mark(z) -{ 0 }-> mark(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 1 }-> a__f(z - 1) :|: z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 1 }-> 1 + mark(z - 1) :|: z - 1 >= 0 Function symbols to be analyzed: {a__f}, {mark}, {encArg}, {encode_mark}, {encode_g}, {encode_f}, {encode_a__f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 1 }-> a__f(1 + (1 + 0)) :|: z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 0 }-> mark(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> mark(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> mark(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> a__f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> a__f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 0 }-> a__f(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(0) :|: z = 0 encode_a__f(z) -{ 0 }-> a__f(0) :|: z >= 0 encode_a__f(z) -{ 0 }-> a__f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_mark(z) -{ 0 }-> mark(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(0) :|: z = 0 encode_mark(z) -{ 0 }-> mark(0) :|: z >= 0 encode_mark(z) -{ 0 }-> mark(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 1 }-> a__f(z - 1) :|: z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 1 }-> 1 + mark(z - 1) :|: z - 1 >= 0 Function symbols to be analyzed: {a__f}, {mark}, {encArg}, {encode_mark}, {encode_g}, {encode_f}, {encode_a__f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: a__f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + z ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 1 }-> a__f(1 + (1 + 0)) :|: z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 0 }-> mark(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> mark(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> mark(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> a__f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> a__f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 0 }-> a__f(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(0) :|: z = 0 encode_a__f(z) -{ 0 }-> a__f(0) :|: z >= 0 encode_a__f(z) -{ 0 }-> a__f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_mark(z) -{ 0 }-> mark(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(0) :|: z = 0 encode_mark(z) -{ 0 }-> mark(0) :|: z >= 0 encode_mark(z) -{ 0 }-> mark(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 1 }-> a__f(z - 1) :|: z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 1 }-> 1 + mark(z - 1) :|: z - 1 >= 0 Function symbols to be analyzed: {a__f}, {mark}, {encArg}, {encode_mark}, {encode_g}, {encode_f}, {encode_a__f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] a__f: runtime: ?, size: O(n^1) [3 + z] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: a__f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 1 }-> a__f(1 + (1 + 0)) :|: z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 0 }-> mark(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> mark(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> mark(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> a__f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> a__f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 0 }-> a__f(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(0) :|: z = 0 encode_a__f(z) -{ 0 }-> a__f(0) :|: z >= 0 encode_a__f(z) -{ 0 }-> a__f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_mark(z) -{ 0 }-> mark(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(0) :|: z = 0 encode_mark(z) -{ 0 }-> mark(0) :|: z >= 0 encode_mark(z) -{ 0 }-> mark(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 1 }-> a__f(z - 1) :|: z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 1 }-> 1 + mark(z - 1) :|: z - 1 >= 0 Function symbols to be analyzed: {mark}, {encArg}, {encode_mark}, {encode_g}, {encode_f}, {encode_a__f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] a__f: runtime: O(1) [2], size: O(n^1) [3 + z] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 3 }-> s :|: s >= 0, s <= 1 + (1 + 0) + 3, z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 0 + 3, z = 1 + 0 encArg(z) -{ 2 }-> s1 :|: s1 >= 0, s1 <= 0 + 3, z - 1 >= 0 encArg(z) -{ 0 }-> mark(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> mark(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> mark(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 3, z = 0 encode_a__f(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 3, z >= 0 encode_a__f(z) -{ 0 }-> a__f(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_mark(z) -{ 0 }-> mark(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(0) :|: z = 0 encode_mark(z) -{ 0 }-> mark(0) :|: z >= 0 encode_mark(z) -{ 0 }-> mark(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 3 }-> s' :|: s' >= 0, s' <= z - 1 + 3, z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 1 }-> 1 + mark(z - 1) :|: z - 1 >= 0 Function symbols to be analyzed: {mark}, {encArg}, {encode_mark}, {encode_g}, {encode_f}, {encode_a__f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] a__f: runtime: O(1) [2], size: O(n^1) [3 + z] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: mark after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 3 }-> s :|: s >= 0, s <= 1 + (1 + 0) + 3, z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 0 + 3, z = 1 + 0 encArg(z) -{ 2 }-> s1 :|: s1 >= 0, s1 <= 0 + 3, z - 1 >= 0 encArg(z) -{ 0 }-> mark(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> mark(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> mark(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 3, z = 0 encode_a__f(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 3, z >= 0 encode_a__f(z) -{ 0 }-> a__f(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_mark(z) -{ 0 }-> mark(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(0) :|: z = 0 encode_mark(z) -{ 0 }-> mark(0) :|: z >= 0 encode_mark(z) -{ 0 }-> mark(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 3 }-> s' :|: s' >= 0, s' <= z - 1 + 3, z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 1 }-> 1 + mark(z - 1) :|: z - 1 >= 0 Function symbols to be analyzed: {mark}, {encArg}, {encode_mark}, {encode_g}, {encode_f}, {encode_a__f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] a__f: runtime: O(1) [2], size: O(n^1) [3 + z] mark: runtime: ?, size: O(n^1) [2 + z] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: mark after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 4 + z ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 3 }-> s :|: s >= 0, s <= 1 + (1 + 0) + 3, z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 0 + 3, z = 1 + 0 encArg(z) -{ 2 }-> s1 :|: s1 >= 0, s1 <= 0 + 3, z - 1 >= 0 encArg(z) -{ 0 }-> mark(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> mark(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> mark(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 3, z = 0 encode_a__f(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 3, z >= 0 encode_a__f(z) -{ 0 }-> a__f(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_mark(z) -{ 0 }-> mark(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(0) :|: z = 0 encode_mark(z) -{ 0 }-> mark(0) :|: z >= 0 encode_mark(z) -{ 0 }-> mark(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 3 }-> s' :|: s' >= 0, s' <= z - 1 + 3, z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 1 }-> 1 + mark(z - 1) :|: z - 1 >= 0 Function symbols to be analyzed: {encArg}, {encode_mark}, {encode_g}, {encode_f}, {encode_a__f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] a__f: runtime: O(1) [2], size: O(n^1) [3 + z] mark: runtime: O(n^1) [4 + z], size: O(n^1) [2 + z] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 3 }-> s :|: s >= 0, s <= 1 + (1 + 0) + 3, z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 0 + 3, z = 1 + 0 encArg(z) -{ 2 }-> s1 :|: s1 >= 0, s1 <= 0 + 3, z - 1 >= 0 encArg(z) -{ 4 }-> s5 :|: s5 >= 0, s5 <= 0 + 2, z = 1 + 0 encArg(z) -{ 4 }-> s6 :|: s6 >= 0, s6 <= 0 + 2, z - 1 >= 0 encArg(z) -{ 0 }-> mark(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 3, z = 0 encode_a__f(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 3, z >= 0 encode_a__f(z) -{ 0 }-> a__f(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_mark(z) -{ 4 }-> s7 :|: s7 >= 0, s7 <= 0 + 2, z = 0 encode_mark(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0 + 2, z >= 0 encode_mark(z) -{ 0 }-> mark(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 3 }-> s' :|: s' >= 0, s' <= z - 1 + 3, z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 4 + z }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1 + 2, z - 1 >= 0 Function symbols to be analyzed: {encArg}, {encode_mark}, {encode_g}, {encode_f}, {encode_a__f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] a__f: runtime: O(1) [2], size: O(n^1) [3 + z] mark: runtime: O(n^1) [4 + z], size: O(n^1) [2 + z] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3*z ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 3 }-> s :|: s >= 0, s <= 1 + (1 + 0) + 3, z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 0 + 3, z = 1 + 0 encArg(z) -{ 2 }-> s1 :|: s1 >= 0, s1 <= 0 + 3, z - 1 >= 0 encArg(z) -{ 4 }-> s5 :|: s5 >= 0, s5 <= 0 + 2, z = 1 + 0 encArg(z) -{ 4 }-> s6 :|: s6 >= 0, s6 <= 0 + 2, z - 1 >= 0 encArg(z) -{ 0 }-> mark(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 3, z = 0 encode_a__f(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 3, z >= 0 encode_a__f(z) -{ 0 }-> a__f(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_mark(z) -{ 4 }-> s7 :|: s7 >= 0, s7 <= 0 + 2, z = 0 encode_mark(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0 + 2, z >= 0 encode_mark(z) -{ 0 }-> mark(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 3 }-> s' :|: s' >= 0, s' <= z - 1 + 3, z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 4 + z }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1 + 2, z - 1 >= 0 Function symbols to be analyzed: {encArg}, {encode_mark}, {encode_g}, {encode_f}, {encode_a__f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] a__f: runtime: O(1) [2], size: O(n^1) [3 + z] mark: runtime: O(n^1) [4 + z], size: O(n^1) [2 + z] encArg: runtime: ?, size: O(n^1) [3*z] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 8 + 8*z + 6*z^2 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 3 }-> s :|: s >= 0, s <= 1 + (1 + 0) + 3, z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 0 + 3, z = 1 + 0 encArg(z) -{ 2 }-> s1 :|: s1 >= 0, s1 <= 0 + 3, z - 1 >= 0 encArg(z) -{ 4 }-> s5 :|: s5 >= 0, s5 <= 0 + 2, z = 1 + 0 encArg(z) -{ 4 }-> s6 :|: s6 >= 0, s6 <= 0 + 2, z - 1 >= 0 encArg(z) -{ 0 }-> mark(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> mark(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(mark(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(a__f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> a__f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 3, z = 0 encode_a__f(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 3, z >= 0 encode_a__f(z) -{ 0 }-> a__f(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> a__f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_mark(z) -{ 4 }-> s7 :|: s7 >= 0, s7 <= 0 + 2, z = 0 encode_mark(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0 + 2, z >= 0 encode_mark(z) -{ 0 }-> mark(mark(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(a__f(encArg(z - 1))) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> mark(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 3 }-> s' :|: s' >= 0, s' <= z - 1 + 3, z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 4 + z }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1 + 2, z - 1 >= 0 Function symbols to be analyzed: {encode_mark}, {encode_g}, {encode_f}, {encode_a__f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] a__f: runtime: O(1) [2], size: O(n^1) [3 + z] mark: runtime: O(n^1) [4 + z], size: O(n^1) [2 + z] encArg: runtime: O(n^2) [8 + 8*z + 6*z^2], size: O(n^1) [3*z] ---------------------------------------- (43) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 3 }-> s :|: s >= 0, s <= 1 + (1 + 0) + 3, z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 0 + 3, z = 1 + 0 encArg(z) -{ 2 }-> s1 :|: s1 >= 0, s1 <= 0 + 3, z - 1 >= 0 encArg(z) -{ 18 + -16*z + 6*z^2 }-> s11 :|: s10 >= 0, s10 <= 3 * (z - 2), s11 >= 0, s11 <= 1 + s10 + 3, z - 2 >= 0 encArg(z) -{ 20 + -16*z + 6*z^2 }-> s14 :|: s12 >= 0, s12 <= 3 * (z - 2), s13 >= 0, s13 <= s12 + 3, s14 >= 0, s14 <= s13 + 3, z - 2 >= 0 encArg(z) -{ 22 + s15 + -16*z + 6*z^2 }-> s17 :|: s15 >= 0, s15 <= 3 * (z - 2), s16 >= 0, s16 <= s15 + 2, s17 >= 0, s17 <= s16 + 3, z - 2 >= 0 encArg(z) -{ 21 + s18 + -16*z + 6*z^2 }-> s19 :|: s18 >= 0, s18 <= 3 * (z - 2), s19 >= 0, s19 <= 1 + s18 + 2, z - 2 >= 0 encArg(z) -{ 22 + s21 + -16*z + 6*z^2 }-> s22 :|: s20 >= 0, s20 <= 3 * (z - 2), s21 >= 0, s21 <= s20 + 3, s22 >= 0, s22 <= s21 + 2, z - 2 >= 0 encArg(z) -{ 24 + s23 + s24 + -16*z + 6*z^2 }-> s25 :|: s23 >= 0, s23 <= 3 * (z - 2), s24 >= 0, s24 <= s23 + 2, s25 >= 0, s25 <= s24 + 2, z - 2 >= 0 encArg(z) -{ 4 }-> s5 :|: s5 >= 0, s5 <= 0 + 2, z = 1 + 0 encArg(z) -{ 4 }-> s6 :|: s6 >= 0, s6 <= 0 + 2, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 6 + -4*z + 6*z^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * (z - 1), z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 3, z = 0 encode_a__f(z) -{ 8 + -4*z + 6*z^2 }-> s27 :|: s26 >= 0, s26 <= 3 * (z - 1), s27 >= 0, s27 <= 1 + s26 + 3, z - 1 >= 0 encode_a__f(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 3, z >= 0 encode_a__f(z) -{ 10 + -4*z + 6*z^2 }-> s30 :|: s28 >= 0, s28 <= 3 * (z - 1), s29 >= 0, s29 <= s28 + 3, s30 >= 0, s30 <= s29 + 3, z - 1 >= 0 encode_a__f(z) -{ 12 + s31 + -4*z + 6*z^2 }-> s33 :|: s31 >= 0, s31 <= 3 * (z - 1), s32 >= 0, s32 <= s31 + 2, s33 >= 0, s33 <= s32 + 3, z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 8 + 8*z + 6*z^2 }-> 1 + s34 :|: s34 >= 0, s34 <= 3 * z, z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 8 + 8*z + 6*z^2 }-> 1 + s35 :|: s35 >= 0, s35 <= 3 * z, z >= 0 encode_mark(z) -{ 11 + s36 + -4*z + 6*z^2 }-> s37 :|: s36 >= 0, s36 <= 3 * (z - 1), s37 >= 0, s37 <= 1 + s36 + 2, z - 1 >= 0 encode_mark(z) -{ 12 + s39 + -4*z + 6*z^2 }-> s40 :|: s38 >= 0, s38 <= 3 * (z - 1), s39 >= 0, s39 <= s38 + 3, s40 >= 0, s40 <= s39 + 2, z - 1 >= 0 encode_mark(z) -{ 14 + s41 + s42 + -4*z + 6*z^2 }-> s43 :|: s41 >= 0, s41 <= 3 * (z - 1), s42 >= 0, s42 <= s41 + 2, s43 >= 0, s43 <= s42 + 2, z - 1 >= 0 encode_mark(z) -{ 4 }-> s7 :|: s7 >= 0, s7 <= 0 + 2, z = 0 encode_mark(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0 + 2, z >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 3 }-> s' :|: s' >= 0, s' <= z - 1 + 3, z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 4 + z }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1 + 2, z - 1 >= 0 Function symbols to be analyzed: {encode_mark}, {encode_g}, {encode_f}, {encode_a__f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] a__f: runtime: O(1) [2], size: O(n^1) [3 + z] mark: runtime: O(n^1) [4 + z], size: O(n^1) [2 + z] encArg: runtime: O(n^2) [8 + 8*z + 6*z^2], size: O(n^1) [3*z] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_mark after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + 3*z ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 3 }-> s :|: s >= 0, s <= 1 + (1 + 0) + 3, z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 0 + 3, z = 1 + 0 encArg(z) -{ 2 }-> s1 :|: s1 >= 0, s1 <= 0 + 3, z - 1 >= 0 encArg(z) -{ 18 + -16*z + 6*z^2 }-> s11 :|: s10 >= 0, s10 <= 3 * (z - 2), s11 >= 0, s11 <= 1 + s10 + 3, z - 2 >= 0 encArg(z) -{ 20 + -16*z + 6*z^2 }-> s14 :|: s12 >= 0, s12 <= 3 * (z - 2), s13 >= 0, s13 <= s12 + 3, s14 >= 0, s14 <= s13 + 3, z - 2 >= 0 encArg(z) -{ 22 + s15 + -16*z + 6*z^2 }-> s17 :|: s15 >= 0, s15 <= 3 * (z - 2), s16 >= 0, s16 <= s15 + 2, s17 >= 0, s17 <= s16 + 3, z - 2 >= 0 encArg(z) -{ 21 + s18 + -16*z + 6*z^2 }-> s19 :|: s18 >= 0, s18 <= 3 * (z - 2), s19 >= 0, s19 <= 1 + s18 + 2, z - 2 >= 0 encArg(z) -{ 22 + s21 + -16*z + 6*z^2 }-> s22 :|: s20 >= 0, s20 <= 3 * (z - 2), s21 >= 0, s21 <= s20 + 3, s22 >= 0, s22 <= s21 + 2, z - 2 >= 0 encArg(z) -{ 24 + s23 + s24 + -16*z + 6*z^2 }-> s25 :|: s23 >= 0, s23 <= 3 * (z - 2), s24 >= 0, s24 <= s23 + 2, s25 >= 0, s25 <= s24 + 2, z - 2 >= 0 encArg(z) -{ 4 }-> s5 :|: s5 >= 0, s5 <= 0 + 2, z = 1 + 0 encArg(z) -{ 4 }-> s6 :|: s6 >= 0, s6 <= 0 + 2, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 6 + -4*z + 6*z^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * (z - 1), z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 3, z = 0 encode_a__f(z) -{ 8 + -4*z + 6*z^2 }-> s27 :|: s26 >= 0, s26 <= 3 * (z - 1), s27 >= 0, s27 <= 1 + s26 + 3, z - 1 >= 0 encode_a__f(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 3, z >= 0 encode_a__f(z) -{ 10 + -4*z + 6*z^2 }-> s30 :|: s28 >= 0, s28 <= 3 * (z - 1), s29 >= 0, s29 <= s28 + 3, s30 >= 0, s30 <= s29 + 3, z - 1 >= 0 encode_a__f(z) -{ 12 + s31 + -4*z + 6*z^2 }-> s33 :|: s31 >= 0, s31 <= 3 * (z - 1), s32 >= 0, s32 <= s31 + 2, s33 >= 0, s33 <= s32 + 3, z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 8 + 8*z + 6*z^2 }-> 1 + s34 :|: s34 >= 0, s34 <= 3 * z, z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 8 + 8*z + 6*z^2 }-> 1 + s35 :|: s35 >= 0, s35 <= 3 * z, z >= 0 encode_mark(z) -{ 11 + s36 + -4*z + 6*z^2 }-> s37 :|: s36 >= 0, s36 <= 3 * (z - 1), s37 >= 0, s37 <= 1 + s36 + 2, z - 1 >= 0 encode_mark(z) -{ 12 + s39 + -4*z + 6*z^2 }-> s40 :|: s38 >= 0, s38 <= 3 * (z - 1), s39 >= 0, s39 <= s38 + 3, s40 >= 0, s40 <= s39 + 2, z - 1 >= 0 encode_mark(z) -{ 14 + s41 + s42 + -4*z + 6*z^2 }-> s43 :|: s41 >= 0, s41 <= 3 * (z - 1), s42 >= 0, s42 <= s41 + 2, s43 >= 0, s43 <= s42 + 2, z - 1 >= 0 encode_mark(z) -{ 4 }-> s7 :|: s7 >= 0, s7 <= 0 + 2, z = 0 encode_mark(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0 + 2, z >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 3 }-> s' :|: s' >= 0, s' <= z - 1 + 3, z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 4 + z }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1 + 2, z - 1 >= 0 Function symbols to be analyzed: {encode_mark}, {encode_g}, {encode_f}, {encode_a__f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] a__f: runtime: O(1) [2], size: O(n^1) [3 + z] mark: runtime: O(n^1) [4 + z], size: O(n^1) [2 + z] encArg: runtime: O(n^2) [8 + 8*z + 6*z^2], size: O(n^1) [3*z] encode_mark: runtime: ?, size: O(n^1) [2 + 3*z] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_mark after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 45 + 2*z + 18*z^2 ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 3 }-> s :|: s >= 0, s <= 1 + (1 + 0) + 3, z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 0 + 3, z = 1 + 0 encArg(z) -{ 2 }-> s1 :|: s1 >= 0, s1 <= 0 + 3, z - 1 >= 0 encArg(z) -{ 18 + -16*z + 6*z^2 }-> s11 :|: s10 >= 0, s10 <= 3 * (z - 2), s11 >= 0, s11 <= 1 + s10 + 3, z - 2 >= 0 encArg(z) -{ 20 + -16*z + 6*z^2 }-> s14 :|: s12 >= 0, s12 <= 3 * (z - 2), s13 >= 0, s13 <= s12 + 3, s14 >= 0, s14 <= s13 + 3, z - 2 >= 0 encArg(z) -{ 22 + s15 + -16*z + 6*z^2 }-> s17 :|: s15 >= 0, s15 <= 3 * (z - 2), s16 >= 0, s16 <= s15 + 2, s17 >= 0, s17 <= s16 + 3, z - 2 >= 0 encArg(z) -{ 21 + s18 + -16*z + 6*z^2 }-> s19 :|: s18 >= 0, s18 <= 3 * (z - 2), s19 >= 0, s19 <= 1 + s18 + 2, z - 2 >= 0 encArg(z) -{ 22 + s21 + -16*z + 6*z^2 }-> s22 :|: s20 >= 0, s20 <= 3 * (z - 2), s21 >= 0, s21 <= s20 + 3, s22 >= 0, s22 <= s21 + 2, z - 2 >= 0 encArg(z) -{ 24 + s23 + s24 + -16*z + 6*z^2 }-> s25 :|: s23 >= 0, s23 <= 3 * (z - 2), s24 >= 0, s24 <= s23 + 2, s25 >= 0, s25 <= s24 + 2, z - 2 >= 0 encArg(z) -{ 4 }-> s5 :|: s5 >= 0, s5 <= 0 + 2, z = 1 + 0 encArg(z) -{ 4 }-> s6 :|: s6 >= 0, s6 <= 0 + 2, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 6 + -4*z + 6*z^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * (z - 1), z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 3, z = 0 encode_a__f(z) -{ 8 + -4*z + 6*z^2 }-> s27 :|: s26 >= 0, s26 <= 3 * (z - 1), s27 >= 0, s27 <= 1 + s26 + 3, z - 1 >= 0 encode_a__f(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 3, z >= 0 encode_a__f(z) -{ 10 + -4*z + 6*z^2 }-> s30 :|: s28 >= 0, s28 <= 3 * (z - 1), s29 >= 0, s29 <= s28 + 3, s30 >= 0, s30 <= s29 + 3, z - 1 >= 0 encode_a__f(z) -{ 12 + s31 + -4*z + 6*z^2 }-> s33 :|: s31 >= 0, s31 <= 3 * (z - 1), s32 >= 0, s32 <= s31 + 2, s33 >= 0, s33 <= s32 + 3, z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 8 + 8*z + 6*z^2 }-> 1 + s34 :|: s34 >= 0, s34 <= 3 * z, z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 8 + 8*z + 6*z^2 }-> 1 + s35 :|: s35 >= 0, s35 <= 3 * z, z >= 0 encode_mark(z) -{ 11 + s36 + -4*z + 6*z^2 }-> s37 :|: s36 >= 0, s36 <= 3 * (z - 1), s37 >= 0, s37 <= 1 + s36 + 2, z - 1 >= 0 encode_mark(z) -{ 12 + s39 + -4*z + 6*z^2 }-> s40 :|: s38 >= 0, s38 <= 3 * (z - 1), s39 >= 0, s39 <= s38 + 3, s40 >= 0, s40 <= s39 + 2, z - 1 >= 0 encode_mark(z) -{ 14 + s41 + s42 + -4*z + 6*z^2 }-> s43 :|: s41 >= 0, s41 <= 3 * (z - 1), s42 >= 0, s42 <= s41 + 2, s43 >= 0, s43 <= s42 + 2, z - 1 >= 0 encode_mark(z) -{ 4 }-> s7 :|: s7 >= 0, s7 <= 0 + 2, z = 0 encode_mark(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0 + 2, z >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 3 }-> s' :|: s' >= 0, s' <= z - 1 + 3, z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 4 + z }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1 + 2, z - 1 >= 0 Function symbols to be analyzed: {encode_g}, {encode_f}, {encode_a__f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] a__f: runtime: O(1) [2], size: O(n^1) [3 + z] mark: runtime: O(n^1) [4 + z], size: O(n^1) [2 + z] encArg: runtime: O(n^2) [8 + 8*z + 6*z^2], size: O(n^1) [3*z] encode_mark: runtime: O(n^2) [45 + 2*z + 18*z^2], size: O(n^1) [2 + 3*z] ---------------------------------------- (49) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 3 }-> s :|: s >= 0, s <= 1 + (1 + 0) + 3, z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 0 + 3, z = 1 + 0 encArg(z) -{ 2 }-> s1 :|: s1 >= 0, s1 <= 0 + 3, z - 1 >= 0 encArg(z) -{ 18 + -16*z + 6*z^2 }-> s11 :|: s10 >= 0, s10 <= 3 * (z - 2), s11 >= 0, s11 <= 1 + s10 + 3, z - 2 >= 0 encArg(z) -{ 20 + -16*z + 6*z^2 }-> s14 :|: s12 >= 0, s12 <= 3 * (z - 2), s13 >= 0, s13 <= s12 + 3, s14 >= 0, s14 <= s13 + 3, z - 2 >= 0 encArg(z) -{ 22 + s15 + -16*z + 6*z^2 }-> s17 :|: s15 >= 0, s15 <= 3 * (z - 2), s16 >= 0, s16 <= s15 + 2, s17 >= 0, s17 <= s16 + 3, z - 2 >= 0 encArg(z) -{ 21 + s18 + -16*z + 6*z^2 }-> s19 :|: s18 >= 0, s18 <= 3 * (z - 2), s19 >= 0, s19 <= 1 + s18 + 2, z - 2 >= 0 encArg(z) -{ 22 + s21 + -16*z + 6*z^2 }-> s22 :|: s20 >= 0, s20 <= 3 * (z - 2), s21 >= 0, s21 <= s20 + 3, s22 >= 0, s22 <= s21 + 2, z - 2 >= 0 encArg(z) -{ 24 + s23 + s24 + -16*z + 6*z^2 }-> s25 :|: s23 >= 0, s23 <= 3 * (z - 2), s24 >= 0, s24 <= s23 + 2, s25 >= 0, s25 <= s24 + 2, z - 2 >= 0 encArg(z) -{ 4 }-> s5 :|: s5 >= 0, s5 <= 0 + 2, z = 1 + 0 encArg(z) -{ 4 }-> s6 :|: s6 >= 0, s6 <= 0 + 2, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 6 + -4*z + 6*z^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * (z - 1), z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 3, z = 0 encode_a__f(z) -{ 8 + -4*z + 6*z^2 }-> s27 :|: s26 >= 0, s26 <= 3 * (z - 1), s27 >= 0, s27 <= 1 + s26 + 3, z - 1 >= 0 encode_a__f(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 3, z >= 0 encode_a__f(z) -{ 10 + -4*z + 6*z^2 }-> s30 :|: s28 >= 0, s28 <= 3 * (z - 1), s29 >= 0, s29 <= s28 + 3, s30 >= 0, s30 <= s29 + 3, z - 1 >= 0 encode_a__f(z) -{ 12 + s31 + -4*z + 6*z^2 }-> s33 :|: s31 >= 0, s31 <= 3 * (z - 1), s32 >= 0, s32 <= s31 + 2, s33 >= 0, s33 <= s32 + 3, z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 8 + 8*z + 6*z^2 }-> 1 + s34 :|: s34 >= 0, s34 <= 3 * z, z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 8 + 8*z + 6*z^2 }-> 1 + s35 :|: s35 >= 0, s35 <= 3 * z, z >= 0 encode_mark(z) -{ 11 + s36 + -4*z + 6*z^2 }-> s37 :|: s36 >= 0, s36 <= 3 * (z - 1), s37 >= 0, s37 <= 1 + s36 + 2, z - 1 >= 0 encode_mark(z) -{ 12 + s39 + -4*z + 6*z^2 }-> s40 :|: s38 >= 0, s38 <= 3 * (z - 1), s39 >= 0, s39 <= s38 + 3, s40 >= 0, s40 <= s39 + 2, z - 1 >= 0 encode_mark(z) -{ 14 + s41 + s42 + -4*z + 6*z^2 }-> s43 :|: s41 >= 0, s41 <= 3 * (z - 1), s42 >= 0, s42 <= s41 + 2, s43 >= 0, s43 <= s42 + 2, z - 1 >= 0 encode_mark(z) -{ 4 }-> s7 :|: s7 >= 0, s7 <= 0 + 2, z = 0 encode_mark(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0 + 2, z >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 3 }-> s' :|: s' >= 0, s' <= z - 1 + 3, z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 4 + z }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1 + 2, z - 1 >= 0 Function symbols to be analyzed: {encode_g}, {encode_f}, {encode_a__f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] a__f: runtime: O(1) [2], size: O(n^1) [3 + z] mark: runtime: O(n^1) [4 + z], size: O(n^1) [2 + z] encArg: runtime: O(n^2) [8 + 8*z + 6*z^2], size: O(n^1) [3*z] encode_mark: runtime: O(n^2) [45 + 2*z + 18*z^2], size: O(n^1) [2 + 3*z] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 3*z ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 3 }-> s :|: s >= 0, s <= 1 + (1 + 0) + 3, z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 0 + 3, z = 1 + 0 encArg(z) -{ 2 }-> s1 :|: s1 >= 0, s1 <= 0 + 3, z - 1 >= 0 encArg(z) -{ 18 + -16*z + 6*z^2 }-> s11 :|: s10 >= 0, s10 <= 3 * (z - 2), s11 >= 0, s11 <= 1 + s10 + 3, z - 2 >= 0 encArg(z) -{ 20 + -16*z + 6*z^2 }-> s14 :|: s12 >= 0, s12 <= 3 * (z - 2), s13 >= 0, s13 <= s12 + 3, s14 >= 0, s14 <= s13 + 3, z - 2 >= 0 encArg(z) -{ 22 + s15 + -16*z + 6*z^2 }-> s17 :|: s15 >= 0, s15 <= 3 * (z - 2), s16 >= 0, s16 <= s15 + 2, s17 >= 0, s17 <= s16 + 3, z - 2 >= 0 encArg(z) -{ 21 + s18 + -16*z + 6*z^2 }-> s19 :|: s18 >= 0, s18 <= 3 * (z - 2), s19 >= 0, s19 <= 1 + s18 + 2, z - 2 >= 0 encArg(z) -{ 22 + s21 + -16*z + 6*z^2 }-> s22 :|: s20 >= 0, s20 <= 3 * (z - 2), s21 >= 0, s21 <= s20 + 3, s22 >= 0, s22 <= s21 + 2, z - 2 >= 0 encArg(z) -{ 24 + s23 + s24 + -16*z + 6*z^2 }-> s25 :|: s23 >= 0, s23 <= 3 * (z - 2), s24 >= 0, s24 <= s23 + 2, s25 >= 0, s25 <= s24 + 2, z - 2 >= 0 encArg(z) -{ 4 }-> s5 :|: s5 >= 0, s5 <= 0 + 2, z = 1 + 0 encArg(z) -{ 4 }-> s6 :|: s6 >= 0, s6 <= 0 + 2, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 6 + -4*z + 6*z^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * (z - 1), z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 3, z = 0 encode_a__f(z) -{ 8 + -4*z + 6*z^2 }-> s27 :|: s26 >= 0, s26 <= 3 * (z - 1), s27 >= 0, s27 <= 1 + s26 + 3, z - 1 >= 0 encode_a__f(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 3, z >= 0 encode_a__f(z) -{ 10 + -4*z + 6*z^2 }-> s30 :|: s28 >= 0, s28 <= 3 * (z - 1), s29 >= 0, s29 <= s28 + 3, s30 >= 0, s30 <= s29 + 3, z - 1 >= 0 encode_a__f(z) -{ 12 + s31 + -4*z + 6*z^2 }-> s33 :|: s31 >= 0, s31 <= 3 * (z - 1), s32 >= 0, s32 <= s31 + 2, s33 >= 0, s33 <= s32 + 3, z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 8 + 8*z + 6*z^2 }-> 1 + s34 :|: s34 >= 0, s34 <= 3 * z, z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 8 + 8*z + 6*z^2 }-> 1 + s35 :|: s35 >= 0, s35 <= 3 * z, z >= 0 encode_mark(z) -{ 11 + s36 + -4*z + 6*z^2 }-> s37 :|: s36 >= 0, s36 <= 3 * (z - 1), s37 >= 0, s37 <= 1 + s36 + 2, z - 1 >= 0 encode_mark(z) -{ 12 + s39 + -4*z + 6*z^2 }-> s40 :|: s38 >= 0, s38 <= 3 * (z - 1), s39 >= 0, s39 <= s38 + 3, s40 >= 0, s40 <= s39 + 2, z - 1 >= 0 encode_mark(z) -{ 14 + s41 + s42 + -4*z + 6*z^2 }-> s43 :|: s41 >= 0, s41 <= 3 * (z - 1), s42 >= 0, s42 <= s41 + 2, s43 >= 0, s43 <= s42 + 2, z - 1 >= 0 encode_mark(z) -{ 4 }-> s7 :|: s7 >= 0, s7 <= 0 + 2, z = 0 encode_mark(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0 + 2, z >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 3 }-> s' :|: s' >= 0, s' <= z - 1 + 3, z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 4 + z }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1 + 2, z - 1 >= 0 Function symbols to be analyzed: {encode_g}, {encode_f}, {encode_a__f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] a__f: runtime: O(1) [2], size: O(n^1) [3 + z] mark: runtime: O(n^1) [4 + z], size: O(n^1) [2 + z] encArg: runtime: O(n^2) [8 + 8*z + 6*z^2], size: O(n^1) [3*z] encode_mark: runtime: O(n^2) [45 + 2*z + 18*z^2], size: O(n^1) [2 + 3*z] encode_g: runtime: ?, size: O(n^1) [1 + 3*z] ---------------------------------------- (53) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 8 + 8*z + 6*z^2 ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 3 }-> s :|: s >= 0, s <= 1 + (1 + 0) + 3, z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 0 + 3, z = 1 + 0 encArg(z) -{ 2 }-> s1 :|: s1 >= 0, s1 <= 0 + 3, z - 1 >= 0 encArg(z) -{ 18 + -16*z + 6*z^2 }-> s11 :|: s10 >= 0, s10 <= 3 * (z - 2), s11 >= 0, s11 <= 1 + s10 + 3, z - 2 >= 0 encArg(z) -{ 20 + -16*z + 6*z^2 }-> s14 :|: s12 >= 0, s12 <= 3 * (z - 2), s13 >= 0, s13 <= s12 + 3, s14 >= 0, s14 <= s13 + 3, z - 2 >= 0 encArg(z) -{ 22 + s15 + -16*z + 6*z^2 }-> s17 :|: s15 >= 0, s15 <= 3 * (z - 2), s16 >= 0, s16 <= s15 + 2, s17 >= 0, s17 <= s16 + 3, z - 2 >= 0 encArg(z) -{ 21 + s18 + -16*z + 6*z^2 }-> s19 :|: s18 >= 0, s18 <= 3 * (z - 2), s19 >= 0, s19 <= 1 + s18 + 2, z - 2 >= 0 encArg(z) -{ 22 + s21 + -16*z + 6*z^2 }-> s22 :|: s20 >= 0, s20 <= 3 * (z - 2), s21 >= 0, s21 <= s20 + 3, s22 >= 0, s22 <= s21 + 2, z - 2 >= 0 encArg(z) -{ 24 + s23 + s24 + -16*z + 6*z^2 }-> s25 :|: s23 >= 0, s23 <= 3 * (z - 2), s24 >= 0, s24 <= s23 + 2, s25 >= 0, s25 <= s24 + 2, z - 2 >= 0 encArg(z) -{ 4 }-> s5 :|: s5 >= 0, s5 <= 0 + 2, z = 1 + 0 encArg(z) -{ 4 }-> s6 :|: s6 >= 0, s6 <= 0 + 2, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 6 + -4*z + 6*z^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * (z - 1), z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 3, z = 0 encode_a__f(z) -{ 8 + -4*z + 6*z^2 }-> s27 :|: s26 >= 0, s26 <= 3 * (z - 1), s27 >= 0, s27 <= 1 + s26 + 3, z - 1 >= 0 encode_a__f(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 3, z >= 0 encode_a__f(z) -{ 10 + -4*z + 6*z^2 }-> s30 :|: s28 >= 0, s28 <= 3 * (z - 1), s29 >= 0, s29 <= s28 + 3, s30 >= 0, s30 <= s29 + 3, z - 1 >= 0 encode_a__f(z) -{ 12 + s31 + -4*z + 6*z^2 }-> s33 :|: s31 >= 0, s31 <= 3 * (z - 1), s32 >= 0, s32 <= s31 + 2, s33 >= 0, s33 <= s32 + 3, z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 8 + 8*z + 6*z^2 }-> 1 + s34 :|: s34 >= 0, s34 <= 3 * z, z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 8 + 8*z + 6*z^2 }-> 1 + s35 :|: s35 >= 0, s35 <= 3 * z, z >= 0 encode_mark(z) -{ 11 + s36 + -4*z + 6*z^2 }-> s37 :|: s36 >= 0, s36 <= 3 * (z - 1), s37 >= 0, s37 <= 1 + s36 + 2, z - 1 >= 0 encode_mark(z) -{ 12 + s39 + -4*z + 6*z^2 }-> s40 :|: s38 >= 0, s38 <= 3 * (z - 1), s39 >= 0, s39 <= s38 + 3, s40 >= 0, s40 <= s39 + 2, z - 1 >= 0 encode_mark(z) -{ 14 + s41 + s42 + -4*z + 6*z^2 }-> s43 :|: s41 >= 0, s41 <= 3 * (z - 1), s42 >= 0, s42 <= s41 + 2, s43 >= 0, s43 <= s42 + 2, z - 1 >= 0 encode_mark(z) -{ 4 }-> s7 :|: s7 >= 0, s7 <= 0 + 2, z = 0 encode_mark(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0 + 2, z >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 3 }-> s' :|: s' >= 0, s' <= z - 1 + 3, z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 4 + z }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1 + 2, z - 1 >= 0 Function symbols to be analyzed: {encode_f}, {encode_a__f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] a__f: runtime: O(1) [2], size: O(n^1) [3 + z] mark: runtime: O(n^1) [4 + z], size: O(n^1) [2 + z] encArg: runtime: O(n^2) [8 + 8*z + 6*z^2], size: O(n^1) [3*z] encode_mark: runtime: O(n^2) [45 + 2*z + 18*z^2], size: O(n^1) [2 + 3*z] encode_g: runtime: O(n^2) [8 + 8*z + 6*z^2], size: O(n^1) [1 + 3*z] ---------------------------------------- (55) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 3 }-> s :|: s >= 0, s <= 1 + (1 + 0) + 3, z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 0 + 3, z = 1 + 0 encArg(z) -{ 2 }-> s1 :|: s1 >= 0, s1 <= 0 + 3, z - 1 >= 0 encArg(z) -{ 18 + -16*z + 6*z^2 }-> s11 :|: s10 >= 0, s10 <= 3 * (z - 2), s11 >= 0, s11 <= 1 + s10 + 3, z - 2 >= 0 encArg(z) -{ 20 + -16*z + 6*z^2 }-> s14 :|: s12 >= 0, s12 <= 3 * (z - 2), s13 >= 0, s13 <= s12 + 3, s14 >= 0, s14 <= s13 + 3, z - 2 >= 0 encArg(z) -{ 22 + s15 + -16*z + 6*z^2 }-> s17 :|: s15 >= 0, s15 <= 3 * (z - 2), s16 >= 0, s16 <= s15 + 2, s17 >= 0, s17 <= s16 + 3, z - 2 >= 0 encArg(z) -{ 21 + s18 + -16*z + 6*z^2 }-> s19 :|: s18 >= 0, s18 <= 3 * (z - 2), s19 >= 0, s19 <= 1 + s18 + 2, z - 2 >= 0 encArg(z) -{ 22 + s21 + -16*z + 6*z^2 }-> s22 :|: s20 >= 0, s20 <= 3 * (z - 2), s21 >= 0, s21 <= s20 + 3, s22 >= 0, s22 <= s21 + 2, z - 2 >= 0 encArg(z) -{ 24 + s23 + s24 + -16*z + 6*z^2 }-> s25 :|: s23 >= 0, s23 <= 3 * (z - 2), s24 >= 0, s24 <= s23 + 2, s25 >= 0, s25 <= s24 + 2, z - 2 >= 0 encArg(z) -{ 4 }-> s5 :|: s5 >= 0, s5 <= 0 + 2, z = 1 + 0 encArg(z) -{ 4 }-> s6 :|: s6 >= 0, s6 <= 0 + 2, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 6 + -4*z + 6*z^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * (z - 1), z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 3, z = 0 encode_a__f(z) -{ 8 + -4*z + 6*z^2 }-> s27 :|: s26 >= 0, s26 <= 3 * (z - 1), s27 >= 0, s27 <= 1 + s26 + 3, z - 1 >= 0 encode_a__f(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 3, z >= 0 encode_a__f(z) -{ 10 + -4*z + 6*z^2 }-> s30 :|: s28 >= 0, s28 <= 3 * (z - 1), s29 >= 0, s29 <= s28 + 3, s30 >= 0, s30 <= s29 + 3, z - 1 >= 0 encode_a__f(z) -{ 12 + s31 + -4*z + 6*z^2 }-> s33 :|: s31 >= 0, s31 <= 3 * (z - 1), s32 >= 0, s32 <= s31 + 2, s33 >= 0, s33 <= s32 + 3, z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 8 + 8*z + 6*z^2 }-> 1 + s34 :|: s34 >= 0, s34 <= 3 * z, z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 8 + 8*z + 6*z^2 }-> 1 + s35 :|: s35 >= 0, s35 <= 3 * z, z >= 0 encode_mark(z) -{ 11 + s36 + -4*z + 6*z^2 }-> s37 :|: s36 >= 0, s36 <= 3 * (z - 1), s37 >= 0, s37 <= 1 + s36 + 2, z - 1 >= 0 encode_mark(z) -{ 12 + s39 + -4*z + 6*z^2 }-> s40 :|: s38 >= 0, s38 <= 3 * (z - 1), s39 >= 0, s39 <= s38 + 3, s40 >= 0, s40 <= s39 + 2, z - 1 >= 0 encode_mark(z) -{ 14 + s41 + s42 + -4*z + 6*z^2 }-> s43 :|: s41 >= 0, s41 <= 3 * (z - 1), s42 >= 0, s42 <= s41 + 2, s43 >= 0, s43 <= s42 + 2, z - 1 >= 0 encode_mark(z) -{ 4 }-> s7 :|: s7 >= 0, s7 <= 0 + 2, z = 0 encode_mark(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0 + 2, z >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 3 }-> s' :|: s' >= 0, s' <= z - 1 + 3, z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 4 + z }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1 + 2, z - 1 >= 0 Function symbols to be analyzed: {encode_f}, {encode_a__f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] a__f: runtime: O(1) [2], size: O(n^1) [3 + z] mark: runtime: O(n^1) [4 + z], size: O(n^1) [2 + z] encArg: runtime: O(n^2) [8 + 8*z + 6*z^2], size: O(n^1) [3*z] encode_mark: runtime: O(n^2) [45 + 2*z + 18*z^2], size: O(n^1) [2 + 3*z] encode_g: runtime: O(n^2) [8 + 8*z + 6*z^2], size: O(n^1) [1 + 3*z] ---------------------------------------- (57) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 3*z ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 3 }-> s :|: s >= 0, s <= 1 + (1 + 0) + 3, z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 0 + 3, z = 1 + 0 encArg(z) -{ 2 }-> s1 :|: s1 >= 0, s1 <= 0 + 3, z - 1 >= 0 encArg(z) -{ 18 + -16*z + 6*z^2 }-> s11 :|: s10 >= 0, s10 <= 3 * (z - 2), s11 >= 0, s11 <= 1 + s10 + 3, z - 2 >= 0 encArg(z) -{ 20 + -16*z + 6*z^2 }-> s14 :|: s12 >= 0, s12 <= 3 * (z - 2), s13 >= 0, s13 <= s12 + 3, s14 >= 0, s14 <= s13 + 3, z - 2 >= 0 encArg(z) -{ 22 + s15 + -16*z + 6*z^2 }-> s17 :|: s15 >= 0, s15 <= 3 * (z - 2), s16 >= 0, s16 <= s15 + 2, s17 >= 0, s17 <= s16 + 3, z - 2 >= 0 encArg(z) -{ 21 + s18 + -16*z + 6*z^2 }-> s19 :|: s18 >= 0, s18 <= 3 * (z - 2), s19 >= 0, s19 <= 1 + s18 + 2, z - 2 >= 0 encArg(z) -{ 22 + s21 + -16*z + 6*z^2 }-> s22 :|: s20 >= 0, s20 <= 3 * (z - 2), s21 >= 0, s21 <= s20 + 3, s22 >= 0, s22 <= s21 + 2, z - 2 >= 0 encArg(z) -{ 24 + s23 + s24 + -16*z + 6*z^2 }-> s25 :|: s23 >= 0, s23 <= 3 * (z - 2), s24 >= 0, s24 <= s23 + 2, s25 >= 0, s25 <= s24 + 2, z - 2 >= 0 encArg(z) -{ 4 }-> s5 :|: s5 >= 0, s5 <= 0 + 2, z = 1 + 0 encArg(z) -{ 4 }-> s6 :|: s6 >= 0, s6 <= 0 + 2, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 6 + -4*z + 6*z^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * (z - 1), z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 3, z = 0 encode_a__f(z) -{ 8 + -4*z + 6*z^2 }-> s27 :|: s26 >= 0, s26 <= 3 * (z - 1), s27 >= 0, s27 <= 1 + s26 + 3, z - 1 >= 0 encode_a__f(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 3, z >= 0 encode_a__f(z) -{ 10 + -4*z + 6*z^2 }-> s30 :|: s28 >= 0, s28 <= 3 * (z - 1), s29 >= 0, s29 <= s28 + 3, s30 >= 0, s30 <= s29 + 3, z - 1 >= 0 encode_a__f(z) -{ 12 + s31 + -4*z + 6*z^2 }-> s33 :|: s31 >= 0, s31 <= 3 * (z - 1), s32 >= 0, s32 <= s31 + 2, s33 >= 0, s33 <= s32 + 3, z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 8 + 8*z + 6*z^2 }-> 1 + s34 :|: s34 >= 0, s34 <= 3 * z, z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 8 + 8*z + 6*z^2 }-> 1 + s35 :|: s35 >= 0, s35 <= 3 * z, z >= 0 encode_mark(z) -{ 11 + s36 + -4*z + 6*z^2 }-> s37 :|: s36 >= 0, s36 <= 3 * (z - 1), s37 >= 0, s37 <= 1 + s36 + 2, z - 1 >= 0 encode_mark(z) -{ 12 + s39 + -4*z + 6*z^2 }-> s40 :|: s38 >= 0, s38 <= 3 * (z - 1), s39 >= 0, s39 <= s38 + 3, s40 >= 0, s40 <= s39 + 2, z - 1 >= 0 encode_mark(z) -{ 14 + s41 + s42 + -4*z + 6*z^2 }-> s43 :|: s41 >= 0, s41 <= 3 * (z - 1), s42 >= 0, s42 <= s41 + 2, s43 >= 0, s43 <= s42 + 2, z - 1 >= 0 encode_mark(z) -{ 4 }-> s7 :|: s7 >= 0, s7 <= 0 + 2, z = 0 encode_mark(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0 + 2, z >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 3 }-> s' :|: s' >= 0, s' <= z - 1 + 3, z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 4 + z }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1 + 2, z - 1 >= 0 Function symbols to be analyzed: {encode_f}, {encode_a__f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] a__f: runtime: O(1) [2], size: O(n^1) [3 + z] mark: runtime: O(n^1) [4 + z], size: O(n^1) [2 + z] encArg: runtime: O(n^2) [8 + 8*z + 6*z^2], size: O(n^1) [3*z] encode_mark: runtime: O(n^2) [45 + 2*z + 18*z^2], size: O(n^1) [2 + 3*z] encode_g: runtime: O(n^2) [8 + 8*z + 6*z^2], size: O(n^1) [1 + 3*z] encode_f: runtime: ?, size: O(n^1) [1 + 3*z] ---------------------------------------- (59) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 8 + 8*z + 6*z^2 ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 3 }-> s :|: s >= 0, s <= 1 + (1 + 0) + 3, z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 0 + 3, z = 1 + 0 encArg(z) -{ 2 }-> s1 :|: s1 >= 0, s1 <= 0 + 3, z - 1 >= 0 encArg(z) -{ 18 + -16*z + 6*z^2 }-> s11 :|: s10 >= 0, s10 <= 3 * (z - 2), s11 >= 0, s11 <= 1 + s10 + 3, z - 2 >= 0 encArg(z) -{ 20 + -16*z + 6*z^2 }-> s14 :|: s12 >= 0, s12 <= 3 * (z - 2), s13 >= 0, s13 <= s12 + 3, s14 >= 0, s14 <= s13 + 3, z - 2 >= 0 encArg(z) -{ 22 + s15 + -16*z + 6*z^2 }-> s17 :|: s15 >= 0, s15 <= 3 * (z - 2), s16 >= 0, s16 <= s15 + 2, s17 >= 0, s17 <= s16 + 3, z - 2 >= 0 encArg(z) -{ 21 + s18 + -16*z + 6*z^2 }-> s19 :|: s18 >= 0, s18 <= 3 * (z - 2), s19 >= 0, s19 <= 1 + s18 + 2, z - 2 >= 0 encArg(z) -{ 22 + s21 + -16*z + 6*z^2 }-> s22 :|: s20 >= 0, s20 <= 3 * (z - 2), s21 >= 0, s21 <= s20 + 3, s22 >= 0, s22 <= s21 + 2, z - 2 >= 0 encArg(z) -{ 24 + s23 + s24 + -16*z + 6*z^2 }-> s25 :|: s23 >= 0, s23 <= 3 * (z - 2), s24 >= 0, s24 <= s23 + 2, s25 >= 0, s25 <= s24 + 2, z - 2 >= 0 encArg(z) -{ 4 }-> s5 :|: s5 >= 0, s5 <= 0 + 2, z = 1 + 0 encArg(z) -{ 4 }-> s6 :|: s6 >= 0, s6 <= 0 + 2, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 6 + -4*z + 6*z^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * (z - 1), z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 3, z = 0 encode_a__f(z) -{ 8 + -4*z + 6*z^2 }-> s27 :|: s26 >= 0, s26 <= 3 * (z - 1), s27 >= 0, s27 <= 1 + s26 + 3, z - 1 >= 0 encode_a__f(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 3, z >= 0 encode_a__f(z) -{ 10 + -4*z + 6*z^2 }-> s30 :|: s28 >= 0, s28 <= 3 * (z - 1), s29 >= 0, s29 <= s28 + 3, s30 >= 0, s30 <= s29 + 3, z - 1 >= 0 encode_a__f(z) -{ 12 + s31 + -4*z + 6*z^2 }-> s33 :|: s31 >= 0, s31 <= 3 * (z - 1), s32 >= 0, s32 <= s31 + 2, s33 >= 0, s33 <= s32 + 3, z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 8 + 8*z + 6*z^2 }-> 1 + s34 :|: s34 >= 0, s34 <= 3 * z, z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 8 + 8*z + 6*z^2 }-> 1 + s35 :|: s35 >= 0, s35 <= 3 * z, z >= 0 encode_mark(z) -{ 11 + s36 + -4*z + 6*z^2 }-> s37 :|: s36 >= 0, s36 <= 3 * (z - 1), s37 >= 0, s37 <= 1 + s36 + 2, z - 1 >= 0 encode_mark(z) -{ 12 + s39 + -4*z + 6*z^2 }-> s40 :|: s38 >= 0, s38 <= 3 * (z - 1), s39 >= 0, s39 <= s38 + 3, s40 >= 0, s40 <= s39 + 2, z - 1 >= 0 encode_mark(z) -{ 14 + s41 + s42 + -4*z + 6*z^2 }-> s43 :|: s41 >= 0, s41 <= 3 * (z - 1), s42 >= 0, s42 <= s41 + 2, s43 >= 0, s43 <= s42 + 2, z - 1 >= 0 encode_mark(z) -{ 4 }-> s7 :|: s7 >= 0, s7 <= 0 + 2, z = 0 encode_mark(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0 + 2, z >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 3 }-> s' :|: s' >= 0, s' <= z - 1 + 3, z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 4 + z }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1 + 2, z - 1 >= 0 Function symbols to be analyzed: {encode_a__f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] a__f: runtime: O(1) [2], size: O(n^1) [3 + z] mark: runtime: O(n^1) [4 + z], size: O(n^1) [2 + z] encArg: runtime: O(n^2) [8 + 8*z + 6*z^2], size: O(n^1) [3*z] encode_mark: runtime: O(n^2) [45 + 2*z + 18*z^2], size: O(n^1) [2 + 3*z] encode_g: runtime: O(n^2) [8 + 8*z + 6*z^2], size: O(n^1) [1 + 3*z] encode_f: runtime: O(n^2) [8 + 8*z + 6*z^2], size: O(n^1) [1 + 3*z] ---------------------------------------- (61) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 3 }-> s :|: s >= 0, s <= 1 + (1 + 0) + 3, z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 0 + 3, z = 1 + 0 encArg(z) -{ 2 }-> s1 :|: s1 >= 0, s1 <= 0 + 3, z - 1 >= 0 encArg(z) -{ 18 + -16*z + 6*z^2 }-> s11 :|: s10 >= 0, s10 <= 3 * (z - 2), s11 >= 0, s11 <= 1 + s10 + 3, z - 2 >= 0 encArg(z) -{ 20 + -16*z + 6*z^2 }-> s14 :|: s12 >= 0, s12 <= 3 * (z - 2), s13 >= 0, s13 <= s12 + 3, s14 >= 0, s14 <= s13 + 3, z - 2 >= 0 encArg(z) -{ 22 + s15 + -16*z + 6*z^2 }-> s17 :|: s15 >= 0, s15 <= 3 * (z - 2), s16 >= 0, s16 <= s15 + 2, s17 >= 0, s17 <= s16 + 3, z - 2 >= 0 encArg(z) -{ 21 + s18 + -16*z + 6*z^2 }-> s19 :|: s18 >= 0, s18 <= 3 * (z - 2), s19 >= 0, s19 <= 1 + s18 + 2, z - 2 >= 0 encArg(z) -{ 22 + s21 + -16*z + 6*z^2 }-> s22 :|: s20 >= 0, s20 <= 3 * (z - 2), s21 >= 0, s21 <= s20 + 3, s22 >= 0, s22 <= s21 + 2, z - 2 >= 0 encArg(z) -{ 24 + s23 + s24 + -16*z + 6*z^2 }-> s25 :|: s23 >= 0, s23 <= 3 * (z - 2), s24 >= 0, s24 <= s23 + 2, s25 >= 0, s25 <= s24 + 2, z - 2 >= 0 encArg(z) -{ 4 }-> s5 :|: s5 >= 0, s5 <= 0 + 2, z = 1 + 0 encArg(z) -{ 4 }-> s6 :|: s6 >= 0, s6 <= 0 + 2, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 6 + -4*z + 6*z^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * (z - 1), z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 3, z = 0 encode_a__f(z) -{ 8 + -4*z + 6*z^2 }-> s27 :|: s26 >= 0, s26 <= 3 * (z - 1), s27 >= 0, s27 <= 1 + s26 + 3, z - 1 >= 0 encode_a__f(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 3, z >= 0 encode_a__f(z) -{ 10 + -4*z + 6*z^2 }-> s30 :|: s28 >= 0, s28 <= 3 * (z - 1), s29 >= 0, s29 <= s28 + 3, s30 >= 0, s30 <= s29 + 3, z - 1 >= 0 encode_a__f(z) -{ 12 + s31 + -4*z + 6*z^2 }-> s33 :|: s31 >= 0, s31 <= 3 * (z - 1), s32 >= 0, s32 <= s31 + 2, s33 >= 0, s33 <= s32 + 3, z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 8 + 8*z + 6*z^2 }-> 1 + s34 :|: s34 >= 0, s34 <= 3 * z, z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 8 + 8*z + 6*z^2 }-> 1 + s35 :|: s35 >= 0, s35 <= 3 * z, z >= 0 encode_mark(z) -{ 11 + s36 + -4*z + 6*z^2 }-> s37 :|: s36 >= 0, s36 <= 3 * (z - 1), s37 >= 0, s37 <= 1 + s36 + 2, z - 1 >= 0 encode_mark(z) -{ 12 + s39 + -4*z + 6*z^2 }-> s40 :|: s38 >= 0, s38 <= 3 * (z - 1), s39 >= 0, s39 <= s38 + 3, s40 >= 0, s40 <= s39 + 2, z - 1 >= 0 encode_mark(z) -{ 14 + s41 + s42 + -4*z + 6*z^2 }-> s43 :|: s41 >= 0, s41 <= 3 * (z - 1), s42 >= 0, s42 <= s41 + 2, s43 >= 0, s43 <= s42 + 2, z - 1 >= 0 encode_mark(z) -{ 4 }-> s7 :|: s7 >= 0, s7 <= 0 + 2, z = 0 encode_mark(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0 + 2, z >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 3 }-> s' :|: s' >= 0, s' <= z - 1 + 3, z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 4 + z }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1 + 2, z - 1 >= 0 Function symbols to be analyzed: {encode_a__f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] a__f: runtime: O(1) [2], size: O(n^1) [3 + z] mark: runtime: O(n^1) [4 + z], size: O(n^1) [2 + z] encArg: runtime: O(n^2) [8 + 8*z + 6*z^2], size: O(n^1) [3*z] encode_mark: runtime: O(n^2) [45 + 2*z + 18*z^2], size: O(n^1) [2 + 3*z] encode_g: runtime: O(n^2) [8 + 8*z + 6*z^2], size: O(n^1) [1 + 3*z] encode_f: runtime: O(n^2) [8 + 8*z + 6*z^2], size: O(n^1) [1 + 3*z] ---------------------------------------- (63) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_a__f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + 3*z ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 3 }-> s :|: s >= 0, s <= 1 + (1 + 0) + 3, z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 0 + 3, z = 1 + 0 encArg(z) -{ 2 }-> s1 :|: s1 >= 0, s1 <= 0 + 3, z - 1 >= 0 encArg(z) -{ 18 + -16*z + 6*z^2 }-> s11 :|: s10 >= 0, s10 <= 3 * (z - 2), s11 >= 0, s11 <= 1 + s10 + 3, z - 2 >= 0 encArg(z) -{ 20 + -16*z + 6*z^2 }-> s14 :|: s12 >= 0, s12 <= 3 * (z - 2), s13 >= 0, s13 <= s12 + 3, s14 >= 0, s14 <= s13 + 3, z - 2 >= 0 encArg(z) -{ 22 + s15 + -16*z + 6*z^2 }-> s17 :|: s15 >= 0, s15 <= 3 * (z - 2), s16 >= 0, s16 <= s15 + 2, s17 >= 0, s17 <= s16 + 3, z - 2 >= 0 encArg(z) -{ 21 + s18 + -16*z + 6*z^2 }-> s19 :|: s18 >= 0, s18 <= 3 * (z - 2), s19 >= 0, s19 <= 1 + s18 + 2, z - 2 >= 0 encArg(z) -{ 22 + s21 + -16*z + 6*z^2 }-> s22 :|: s20 >= 0, s20 <= 3 * (z - 2), s21 >= 0, s21 <= s20 + 3, s22 >= 0, s22 <= s21 + 2, z - 2 >= 0 encArg(z) -{ 24 + s23 + s24 + -16*z + 6*z^2 }-> s25 :|: s23 >= 0, s23 <= 3 * (z - 2), s24 >= 0, s24 <= s23 + 2, s25 >= 0, s25 <= s24 + 2, z - 2 >= 0 encArg(z) -{ 4 }-> s5 :|: s5 >= 0, s5 <= 0 + 2, z = 1 + 0 encArg(z) -{ 4 }-> s6 :|: s6 >= 0, s6 <= 0 + 2, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 6 + -4*z + 6*z^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * (z - 1), z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 3, z = 0 encode_a__f(z) -{ 8 + -4*z + 6*z^2 }-> s27 :|: s26 >= 0, s26 <= 3 * (z - 1), s27 >= 0, s27 <= 1 + s26 + 3, z - 1 >= 0 encode_a__f(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 3, z >= 0 encode_a__f(z) -{ 10 + -4*z + 6*z^2 }-> s30 :|: s28 >= 0, s28 <= 3 * (z - 1), s29 >= 0, s29 <= s28 + 3, s30 >= 0, s30 <= s29 + 3, z - 1 >= 0 encode_a__f(z) -{ 12 + s31 + -4*z + 6*z^2 }-> s33 :|: s31 >= 0, s31 <= 3 * (z - 1), s32 >= 0, s32 <= s31 + 2, s33 >= 0, s33 <= s32 + 3, z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 8 + 8*z + 6*z^2 }-> 1 + s34 :|: s34 >= 0, s34 <= 3 * z, z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 8 + 8*z + 6*z^2 }-> 1 + s35 :|: s35 >= 0, s35 <= 3 * z, z >= 0 encode_mark(z) -{ 11 + s36 + -4*z + 6*z^2 }-> s37 :|: s36 >= 0, s36 <= 3 * (z - 1), s37 >= 0, s37 <= 1 + s36 + 2, z - 1 >= 0 encode_mark(z) -{ 12 + s39 + -4*z + 6*z^2 }-> s40 :|: s38 >= 0, s38 <= 3 * (z - 1), s39 >= 0, s39 <= s38 + 3, s40 >= 0, s40 <= s39 + 2, z - 1 >= 0 encode_mark(z) -{ 14 + s41 + s42 + -4*z + 6*z^2 }-> s43 :|: s41 >= 0, s41 <= 3 * (z - 1), s42 >= 0, s42 <= s41 + 2, s43 >= 0, s43 <= s42 + 2, z - 1 >= 0 encode_mark(z) -{ 4 }-> s7 :|: s7 >= 0, s7 <= 0 + 2, z = 0 encode_mark(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0 + 2, z >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 3 }-> s' :|: s' >= 0, s' <= z - 1 + 3, z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 4 + z }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1 + 2, z - 1 >= 0 Function symbols to be analyzed: {encode_a__f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] a__f: runtime: O(1) [2], size: O(n^1) [3 + z] mark: runtime: O(n^1) [4 + z], size: O(n^1) [2 + z] encArg: runtime: O(n^2) [8 + 8*z + 6*z^2], size: O(n^1) [3*z] encode_mark: runtime: O(n^2) [45 + 2*z + 18*z^2], size: O(n^1) [2 + 3*z] encode_g: runtime: O(n^2) [8 + 8*z + 6*z^2], size: O(n^1) [1 + 3*z] encode_f: runtime: O(n^2) [8 + 8*z + 6*z^2], size: O(n^1) [1 + 3*z] encode_a__f: runtime: ?, size: O(n^1) [3 + 3*z] ---------------------------------------- (65) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_a__f after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 34 + 18*z^2 ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: a__f(z) -{ 3 }-> s :|: s >= 0, s <= 1 + (1 + 0) + 3, z = 1 + 0 a__f(z) -{ 1 }-> 1 + z :|: z >= 0 encArg(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 0 + 3, z = 1 + 0 encArg(z) -{ 2 }-> s1 :|: s1 >= 0, s1 <= 0 + 3, z - 1 >= 0 encArg(z) -{ 18 + -16*z + 6*z^2 }-> s11 :|: s10 >= 0, s10 <= 3 * (z - 2), s11 >= 0, s11 <= 1 + s10 + 3, z - 2 >= 0 encArg(z) -{ 20 + -16*z + 6*z^2 }-> s14 :|: s12 >= 0, s12 <= 3 * (z - 2), s13 >= 0, s13 <= s12 + 3, s14 >= 0, s14 <= s13 + 3, z - 2 >= 0 encArg(z) -{ 22 + s15 + -16*z + 6*z^2 }-> s17 :|: s15 >= 0, s15 <= 3 * (z - 2), s16 >= 0, s16 <= s15 + 2, s17 >= 0, s17 <= s16 + 3, z - 2 >= 0 encArg(z) -{ 21 + s18 + -16*z + 6*z^2 }-> s19 :|: s18 >= 0, s18 <= 3 * (z - 2), s19 >= 0, s19 <= 1 + s18 + 2, z - 2 >= 0 encArg(z) -{ 22 + s21 + -16*z + 6*z^2 }-> s22 :|: s20 >= 0, s20 <= 3 * (z - 2), s21 >= 0, s21 <= s20 + 3, s22 >= 0, s22 <= s21 + 2, z - 2 >= 0 encArg(z) -{ 24 + s23 + s24 + -16*z + 6*z^2 }-> s25 :|: s23 >= 0, s23 <= 3 * (z - 2), s24 >= 0, s24 <= s23 + 2, s25 >= 0, s25 <= s24 + 2, z - 2 >= 0 encArg(z) -{ 4 }-> s5 :|: s5 >= 0, s5 <= 0 + 2, z = 1 + 0 encArg(z) -{ 4 }-> s6 :|: s6 >= 0, s6 <= 0 + 2, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 6 + -4*z + 6*z^2 }-> 1 + s9 :|: s9 >= 0, s9 <= 3 * (z - 1), z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_a__f(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 3, z = 0 encode_a__f(z) -{ 8 + -4*z + 6*z^2 }-> s27 :|: s26 >= 0, s26 <= 3 * (z - 1), s27 >= 0, s27 <= 1 + s26 + 3, z - 1 >= 0 encode_a__f(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 3, z >= 0 encode_a__f(z) -{ 10 + -4*z + 6*z^2 }-> s30 :|: s28 >= 0, s28 <= 3 * (z - 1), s29 >= 0, s29 <= s28 + 3, s30 >= 0, s30 <= s29 + 3, z - 1 >= 0 encode_a__f(z) -{ 12 + s31 + -4*z + 6*z^2 }-> s33 :|: s31 >= 0, s31 <= 3 * (z - 1), s32 >= 0, s32 <= s31 + 2, s33 >= 0, s33 <= s32 + 3, z - 1 >= 0 encode_a__f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_f(z) -{ 8 + 8*z + 6*z^2 }-> 1 + s34 :|: s34 >= 0, s34 <= 3 * z, z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 8 + 8*z + 6*z^2 }-> 1 + s35 :|: s35 >= 0, s35 <= 3 * z, z >= 0 encode_mark(z) -{ 11 + s36 + -4*z + 6*z^2 }-> s37 :|: s36 >= 0, s36 <= 3 * (z - 1), s37 >= 0, s37 <= 1 + s36 + 2, z - 1 >= 0 encode_mark(z) -{ 12 + s39 + -4*z + 6*z^2 }-> s40 :|: s38 >= 0, s38 <= 3 * (z - 1), s39 >= 0, s39 <= s38 + 3, s40 >= 0, s40 <= s39 + 2, z - 1 >= 0 encode_mark(z) -{ 14 + s41 + s42 + -4*z + 6*z^2 }-> s43 :|: s41 >= 0, s41 <= 3 * (z - 1), s42 >= 0, s42 <= s41 + 2, s43 >= 0, s43 <= s42 + 2, z - 1 >= 0 encode_mark(z) -{ 4 }-> s7 :|: s7 >= 0, s7 <= 0 + 2, z = 0 encode_mark(z) -{ 4 }-> s8 :|: s8 >= 0, s8 <= 0 + 2, z >= 0 encode_mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 3 }-> s' :|: s' >= 0, s' <= z - 1 + 3, z - 1 >= 0 mark(z) -{ 1 }-> 0 :|: z = 0 mark(z) -{ 0 }-> 0 :|: z >= 0 mark(z) -{ 4 + z }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1 + 2, z - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] a__f: runtime: O(1) [2], size: O(n^1) [3 + z] mark: runtime: O(n^1) [4 + z], size: O(n^1) [2 + z] encArg: runtime: O(n^2) [8 + 8*z + 6*z^2], size: O(n^1) [3*z] encode_mark: runtime: O(n^2) [45 + 2*z + 18*z^2], size: O(n^1) [2 + 3*z] encode_g: runtime: O(n^2) [8 + 8*z + 6*z^2], size: O(n^1) [1 + 3*z] encode_f: runtime: O(n^2) [8 + 8*z + 6*z^2], size: O(n^1) [1 + 3*z] encode_a__f: runtime: O(n^2) [34 + 18*z^2], size: O(n^1) [3 + 3*z] ---------------------------------------- (67) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (68) BOUNDS(1, n^2) ---------------------------------------- (69) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (70) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(X) mark(a) -> a mark(g(X)) -> g(mark(X)) a__f(X) -> f(X) The (relative) TRS S consists of the following rules: encArg(f(x_1)) -> f(encArg(x_1)) encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (71) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence mark(g(X)) ->^+ g(mark(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / g(X)]. The result substitution is [ ]. ---------------------------------------- (72) Complex Obligation (BEST) ---------------------------------------- (73) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(X) mark(a) -> a mark(g(X)) -> g(mark(X)) a__f(X) -> f(X) The (relative) TRS S consists of the following rules: encArg(f(x_1)) -> f(encArg(x_1)) encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (74) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (75) BOUNDS(n^1, INF) ---------------------------------------- (76) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(X) mark(a) -> a mark(g(X)) -> g(mark(X)) a__f(X) -> f(X) The (relative) TRS S consists of the following rules: encArg(f(x_1)) -> f(encArg(x_1)) encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) Rewrite Strategy: INNERMOST