/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 34 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsProof [FINISHED, 4 ms] (8) BOUNDS(1, n^1) (9) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxRelTRS (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 7 ms] (12) typed CpxTrs (13) OrderProof [LOWER BOUND(ID), 0 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 196 ms] (16) proven lower bound (17) LowerBoundPropagationProof [FINISHED, 0 ms] (18) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(X) -> g S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(g) -> g encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_g -> g ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(X) -> g The (relative) TRS S consists of the following rules: encArg(g) -> g encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_g -> g Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(X) -> g The (relative) TRS S consists of the following rules: encArg(g) -> g encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_g -> g Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(X) -> g encArg(g) -> g encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_g -> g S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (7) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 2. The certificate found is represented by the following graph. "[8, 9, 10] {(8,9,[f_1|0, encArg_1|0, encode_f_1|0, encode_g|0, g|1]), (8,10,[f_1|1, g|2]), (9,9,[g|0, cons_f_1|0]), (10,9,[encArg_1|1, g|1]), (10,10,[f_1|1, g|2])}" ---------------------------------------- (8) BOUNDS(1, n^1) ---------------------------------------- (9) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(X) -> g The (relative) TRS S consists of the following rules: encArg(g) -> g encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_g -> g Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (12) Obligation: Innermost TRS: Rules: f(X) -> g encArg(g) -> g encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_g -> g Types: f :: g:cons_f -> g:cons_f g :: g:cons_f encArg :: g:cons_f -> g:cons_f cons_f :: g:cons_f -> g:cons_f encode_f :: g:cons_f -> g:cons_f encode_g :: g:cons_f hole_g:cons_f1_0 :: g:cons_f gen_g:cons_f2_0 :: Nat -> g:cons_f ---------------------------------------- (13) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: encArg ---------------------------------------- (14) Obligation: Innermost TRS: Rules: f(X) -> g encArg(g) -> g encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_g -> g Types: f :: g:cons_f -> g:cons_f g :: g:cons_f encArg :: g:cons_f -> g:cons_f cons_f :: g:cons_f -> g:cons_f encode_f :: g:cons_f -> g:cons_f encode_g :: g:cons_f hole_g:cons_f1_0 :: g:cons_f gen_g:cons_f2_0 :: Nat -> g:cons_f Generator Equations: gen_g:cons_f2_0(0) <=> g gen_g:cons_f2_0(+(x, 1)) <=> cons_f(gen_g:cons_f2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_g:cons_f2_0(n4_0)) -> gen_g:cons_f2_0(0), rt in Omega(n4_0) Induction Base: encArg(gen_g:cons_f2_0(0)) ->_R^Omega(0) g Induction Step: encArg(gen_g:cons_f2_0(+(n4_0, 1))) ->_R^Omega(0) f(encArg(gen_g:cons_f2_0(n4_0))) ->_IH f(gen_g:cons_f2_0(0)) ->_R^Omega(1) g We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: f(X) -> g encArg(g) -> g encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_g -> g Types: f :: g:cons_f -> g:cons_f g :: g:cons_f encArg :: g:cons_f -> g:cons_f cons_f :: g:cons_f -> g:cons_f encode_f :: g:cons_f -> g:cons_f encode_g :: g:cons_f hole_g:cons_f1_0 :: g:cons_f gen_g:cons_f2_0 :: Nat -> g:cons_f Generator Equations: gen_g:cons_f2_0(0) <=> g gen_g:cons_f2_0(+(x, 1)) <=> cons_f(gen_g:cons_f2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (17) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (18) BOUNDS(n^1, INF)