/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 717 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 79 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: U11(tt, V2) -> U12(isNat(activate(V2))) U12(tt) -> tt U21(tt) -> tt U31(tt, V2) -> U32(isNat(activate(V2))) U32(tt) -> tt U41(tt, N) -> activate(N) U51(tt, M, N) -> U52(isNat(activate(N)), activate(M), activate(N)) U52(tt, M, N) -> s(plus(activate(N), activate(M))) U61(tt) -> 0 U71(tt, M, N) -> U72(isNat(activate(N)), activate(M), activate(N)) U72(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) isNat(n__0) -> tt isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) plus(N, 0) -> U41(isNat(N), N) plus(N, s(M)) -> U51(isNat(M), M, N) x(N, 0) -> U61(isNat(N)) x(N, s(M)) -> U71(isNat(M), M, N) 0 -> n__0 plus(X1, X2) -> n__plus(X1, X2) s(X) -> n__s(X) x(X1, X2) -> n__x(X1, X2) activate(n__0) -> 0 activate(n__plus(X1, X2)) -> plus(X1, X2) activate(n__s(X)) -> s(X) activate(n__x(X1, X2)) -> x(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(tt) -> tt encArg(n__0) -> n__0 encArg(n__plus(x_1, x_2)) -> n__plus(encArg(x_1), encArg(x_2)) encArg(n__s(x_1)) -> n__s(encArg(x_1)) encArg(n__x(x_1, x_2)) -> n__x(encArg(x_1), encArg(x_2)) encArg(cons_U11(x_1, x_2)) -> U11(encArg(x_1), encArg(x_2)) encArg(cons_U12(x_1)) -> U12(encArg(x_1)) encArg(cons_U21(x_1)) -> U21(encArg(x_1)) encArg(cons_U31(x_1, x_2)) -> U31(encArg(x_1), encArg(x_2)) encArg(cons_U32(x_1)) -> U32(encArg(x_1)) encArg(cons_U41(x_1, x_2)) -> U41(encArg(x_1), encArg(x_2)) encArg(cons_U51(x_1, x_2, x_3)) -> U51(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_U52(x_1, x_2, x_3)) -> U52(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_U61(x_1)) -> U61(encArg(x_1)) encArg(cons_U71(x_1, x_2, x_3)) -> U71(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_U72(x_1, x_2, x_3)) -> U72(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_isNat(x_1)) -> isNat(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_x(x_1, x_2)) -> x(encArg(x_1), encArg(x_2)) encArg(cons_0) -> 0 encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_U11(x_1, x_2) -> U11(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_U12(x_1) -> U12(encArg(x_1)) encode_isNat(x_1) -> isNat(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) encode_U21(x_1) -> U21(encArg(x_1)) encode_U31(x_1, x_2) -> U31(encArg(x_1), encArg(x_2)) encode_U32(x_1) -> U32(encArg(x_1)) encode_U41(x_1, x_2) -> U41(encArg(x_1), encArg(x_2)) encode_U51(x_1, x_2, x_3) -> U51(encArg(x_1), encArg(x_2), encArg(x_3)) encode_U52(x_1, x_2, x_3) -> U52(encArg(x_1), encArg(x_2), encArg(x_3)) encode_s(x_1) -> s(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_U61(x_1) -> U61(encArg(x_1)) encode_0 -> 0 encode_U71(x_1, x_2, x_3) -> U71(encArg(x_1), encArg(x_2), encArg(x_3)) encode_U72(x_1, x_2, x_3) -> U72(encArg(x_1), encArg(x_2), encArg(x_3)) encode_x(x_1, x_2) -> x(encArg(x_1), encArg(x_2)) encode_n__0 -> n__0 encode_n__plus(x_1, x_2) -> n__plus(encArg(x_1), encArg(x_2)) encode_n__s(x_1) -> n__s(encArg(x_1)) encode_n__x(x_1, x_2) -> n__x(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: U11(tt, V2) -> U12(isNat(activate(V2))) U12(tt) -> tt U21(tt) -> tt U31(tt, V2) -> U32(isNat(activate(V2))) U32(tt) -> tt U41(tt, N) -> activate(N) U51(tt, M, N) -> U52(isNat(activate(N)), activate(M), activate(N)) U52(tt, M, N) -> s(plus(activate(N), activate(M))) U61(tt) -> 0 U71(tt, M, N) -> U72(isNat(activate(N)), activate(M), activate(N)) U72(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) isNat(n__0) -> tt isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) plus(N, 0) -> U41(isNat(N), N) plus(N, s(M)) -> U51(isNat(M), M, N) x(N, 0) -> U61(isNat(N)) x(N, s(M)) -> U71(isNat(M), M, N) 0 -> n__0 plus(X1, X2) -> n__plus(X1, X2) s(X) -> n__s(X) x(X1, X2) -> n__x(X1, X2) activate(n__0) -> 0 activate(n__plus(X1, X2)) -> plus(X1, X2) activate(n__s(X)) -> s(X) activate(n__x(X1, X2)) -> x(X1, X2) activate(X) -> X The (relative) TRS S consists of the following rules: encArg(tt) -> tt encArg(n__0) -> n__0 encArg(n__plus(x_1, x_2)) -> n__plus(encArg(x_1), encArg(x_2)) encArg(n__s(x_1)) -> n__s(encArg(x_1)) encArg(n__x(x_1, x_2)) -> n__x(encArg(x_1), encArg(x_2)) encArg(cons_U11(x_1, x_2)) -> U11(encArg(x_1), encArg(x_2)) encArg(cons_U12(x_1)) -> U12(encArg(x_1)) encArg(cons_U21(x_1)) -> U21(encArg(x_1)) encArg(cons_U31(x_1, x_2)) -> U31(encArg(x_1), encArg(x_2)) encArg(cons_U32(x_1)) -> U32(encArg(x_1)) encArg(cons_U41(x_1, x_2)) -> U41(encArg(x_1), encArg(x_2)) encArg(cons_U51(x_1, x_2, x_3)) -> U51(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_U52(x_1, x_2, x_3)) -> U52(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_U61(x_1)) -> U61(encArg(x_1)) encArg(cons_U71(x_1, x_2, x_3)) -> U71(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_U72(x_1, x_2, x_3)) -> U72(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_isNat(x_1)) -> isNat(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_x(x_1, x_2)) -> x(encArg(x_1), encArg(x_2)) encArg(cons_0) -> 0 encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_U11(x_1, x_2) -> U11(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_U12(x_1) -> U12(encArg(x_1)) encode_isNat(x_1) -> isNat(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) encode_U21(x_1) -> U21(encArg(x_1)) encode_U31(x_1, x_2) -> U31(encArg(x_1), encArg(x_2)) encode_U32(x_1) -> U32(encArg(x_1)) encode_U41(x_1, x_2) -> U41(encArg(x_1), encArg(x_2)) encode_U51(x_1, x_2, x_3) -> U51(encArg(x_1), encArg(x_2), encArg(x_3)) encode_U52(x_1, x_2, x_3) -> U52(encArg(x_1), encArg(x_2), encArg(x_3)) encode_s(x_1) -> s(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_U61(x_1) -> U61(encArg(x_1)) encode_0 -> 0 encode_U71(x_1, x_2, x_3) -> U71(encArg(x_1), encArg(x_2), encArg(x_3)) encode_U72(x_1, x_2, x_3) -> U72(encArg(x_1), encArg(x_2), encArg(x_3)) encode_x(x_1, x_2) -> x(encArg(x_1), encArg(x_2)) encode_n__0 -> n__0 encode_n__plus(x_1, x_2) -> n__plus(encArg(x_1), encArg(x_2)) encode_n__s(x_1) -> n__s(encArg(x_1)) encode_n__x(x_1, x_2) -> n__x(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: U11(tt, V2) -> U12(isNat(activate(V2))) U12(tt) -> tt U21(tt) -> tt U31(tt, V2) -> U32(isNat(activate(V2))) U32(tt) -> tt U41(tt, N) -> activate(N) U51(tt, M, N) -> U52(isNat(activate(N)), activate(M), activate(N)) U52(tt, M, N) -> s(plus(activate(N), activate(M))) U61(tt) -> 0 U71(tt, M, N) -> U72(isNat(activate(N)), activate(M), activate(N)) U72(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) isNat(n__0) -> tt isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) plus(N, 0) -> U41(isNat(N), N) plus(N, s(M)) -> U51(isNat(M), M, N) x(N, 0) -> U61(isNat(N)) x(N, s(M)) -> U71(isNat(M), M, N) 0 -> n__0 plus(X1, X2) -> n__plus(X1, X2) s(X) -> n__s(X) x(X1, X2) -> n__x(X1, X2) activate(n__0) -> 0 activate(n__plus(X1, X2)) -> plus(X1, X2) activate(n__s(X)) -> s(X) activate(n__x(X1, X2)) -> x(X1, X2) activate(X) -> X The (relative) TRS S consists of the following rules: encArg(tt) -> tt encArg(n__0) -> n__0 encArg(n__plus(x_1, x_2)) -> n__plus(encArg(x_1), encArg(x_2)) encArg(n__s(x_1)) -> n__s(encArg(x_1)) encArg(n__x(x_1, x_2)) -> n__x(encArg(x_1), encArg(x_2)) encArg(cons_U11(x_1, x_2)) -> U11(encArg(x_1), encArg(x_2)) encArg(cons_U12(x_1)) -> U12(encArg(x_1)) encArg(cons_U21(x_1)) -> U21(encArg(x_1)) encArg(cons_U31(x_1, x_2)) -> U31(encArg(x_1), encArg(x_2)) encArg(cons_U32(x_1)) -> U32(encArg(x_1)) encArg(cons_U41(x_1, x_2)) -> U41(encArg(x_1), encArg(x_2)) encArg(cons_U51(x_1, x_2, x_3)) -> U51(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_U52(x_1, x_2, x_3)) -> U52(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_U61(x_1)) -> U61(encArg(x_1)) encArg(cons_U71(x_1, x_2, x_3)) -> U71(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_U72(x_1, x_2, x_3)) -> U72(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_isNat(x_1)) -> isNat(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_x(x_1, x_2)) -> x(encArg(x_1), encArg(x_2)) encArg(cons_0) -> 0 encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_U11(x_1, x_2) -> U11(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_U12(x_1) -> U12(encArg(x_1)) encode_isNat(x_1) -> isNat(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) encode_U21(x_1) -> U21(encArg(x_1)) encode_U31(x_1, x_2) -> U31(encArg(x_1), encArg(x_2)) encode_U32(x_1) -> U32(encArg(x_1)) encode_U41(x_1, x_2) -> U41(encArg(x_1), encArg(x_2)) encode_U51(x_1, x_2, x_3) -> U51(encArg(x_1), encArg(x_2), encArg(x_3)) encode_U52(x_1, x_2, x_3) -> U52(encArg(x_1), encArg(x_2), encArg(x_3)) encode_s(x_1) -> s(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_U61(x_1) -> U61(encArg(x_1)) encode_0 -> 0 encode_U71(x_1, x_2, x_3) -> U71(encArg(x_1), encArg(x_2), encArg(x_3)) encode_U72(x_1, x_2, x_3) -> U72(encArg(x_1), encArg(x_2), encArg(x_3)) encode_x(x_1, x_2) -> x(encArg(x_1), encArg(x_2)) encode_n__0 -> n__0 encode_n__plus(x_1, x_2) -> n__plus(encArg(x_1), encArg(x_2)) encode_n__s(x_1) -> n__s(encArg(x_1)) encode_n__x(x_1, x_2) -> n__x(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: U11(tt, V2) -> U12(isNat(activate(V2))) U12(tt) -> tt U21(tt) -> tt U31(tt, V2) -> U32(isNat(activate(V2))) U32(tt) -> tt U41(tt, N) -> activate(N) U51(tt, M, N) -> U52(isNat(activate(N)), activate(M), activate(N)) U52(tt, M, N) -> s(plus(activate(N), activate(M))) U61(tt) -> 0 U71(tt, M, N) -> U72(isNat(activate(N)), activate(M), activate(N)) U72(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) isNat(n__0) -> tt isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) plus(N, 0) -> U41(isNat(N), N) plus(N, s(M)) -> U51(isNat(M), M, N) x(N, 0) -> U61(isNat(N)) x(N, s(M)) -> U71(isNat(M), M, N) 0 -> n__0 plus(X1, X2) -> n__plus(X1, X2) s(X) -> n__s(X) x(X1, X2) -> n__x(X1, X2) activate(n__0) -> 0 activate(n__plus(X1, X2)) -> plus(X1, X2) activate(n__s(X)) -> s(X) activate(n__x(X1, X2)) -> x(X1, X2) activate(X) -> X The (relative) TRS S consists of the following rules: encArg(tt) -> tt encArg(n__0) -> n__0 encArg(n__plus(x_1, x_2)) -> n__plus(encArg(x_1), encArg(x_2)) encArg(n__s(x_1)) -> n__s(encArg(x_1)) encArg(n__x(x_1, x_2)) -> n__x(encArg(x_1), encArg(x_2)) encArg(cons_U11(x_1, x_2)) -> U11(encArg(x_1), encArg(x_2)) encArg(cons_U12(x_1)) -> U12(encArg(x_1)) encArg(cons_U21(x_1)) -> U21(encArg(x_1)) encArg(cons_U31(x_1, x_2)) -> U31(encArg(x_1), encArg(x_2)) encArg(cons_U32(x_1)) -> U32(encArg(x_1)) encArg(cons_U41(x_1, x_2)) -> U41(encArg(x_1), encArg(x_2)) encArg(cons_U51(x_1, x_2, x_3)) -> U51(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_U52(x_1, x_2, x_3)) -> U52(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_U61(x_1)) -> U61(encArg(x_1)) encArg(cons_U71(x_1, x_2, x_3)) -> U71(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_U72(x_1, x_2, x_3)) -> U72(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_isNat(x_1)) -> isNat(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_x(x_1, x_2)) -> x(encArg(x_1), encArg(x_2)) encArg(cons_0) -> 0 encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_U11(x_1, x_2) -> U11(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_U12(x_1) -> U12(encArg(x_1)) encode_isNat(x_1) -> isNat(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) encode_U21(x_1) -> U21(encArg(x_1)) encode_U31(x_1, x_2) -> U31(encArg(x_1), encArg(x_2)) encode_U32(x_1) -> U32(encArg(x_1)) encode_U41(x_1, x_2) -> U41(encArg(x_1), encArg(x_2)) encode_U51(x_1, x_2, x_3) -> U51(encArg(x_1), encArg(x_2), encArg(x_3)) encode_U52(x_1, x_2, x_3) -> U52(encArg(x_1), encArg(x_2), encArg(x_3)) encode_s(x_1) -> s(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_U61(x_1) -> U61(encArg(x_1)) encode_0 -> 0 encode_U71(x_1, x_2, x_3) -> U71(encArg(x_1), encArg(x_2), encArg(x_3)) encode_U72(x_1, x_2, x_3) -> U72(encArg(x_1), encArg(x_2), encArg(x_3)) encode_x(x_1, x_2) -> x(encArg(x_1), encArg(x_2)) encode_n__0 -> n__0 encode_n__plus(x_1, x_2) -> n__plus(encArg(x_1), encArg(x_2)) encode_n__s(x_1) -> n__s(encArg(x_1)) encode_n__x(x_1, x_2) -> n__x(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence isNat(n__x(V1, V2)) ->^+ U31(isNat(V1), activate(V2)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [V1 / n__x(V1, V2)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: U11(tt, V2) -> U12(isNat(activate(V2))) U12(tt) -> tt U21(tt) -> tt U31(tt, V2) -> U32(isNat(activate(V2))) U32(tt) -> tt U41(tt, N) -> activate(N) U51(tt, M, N) -> U52(isNat(activate(N)), activate(M), activate(N)) U52(tt, M, N) -> s(plus(activate(N), activate(M))) U61(tt) -> 0 U71(tt, M, N) -> U72(isNat(activate(N)), activate(M), activate(N)) U72(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) isNat(n__0) -> tt isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) plus(N, 0) -> U41(isNat(N), N) plus(N, s(M)) -> U51(isNat(M), M, N) x(N, 0) -> U61(isNat(N)) x(N, s(M)) -> U71(isNat(M), M, N) 0 -> n__0 plus(X1, X2) -> n__plus(X1, X2) s(X) -> n__s(X) x(X1, X2) -> n__x(X1, X2) activate(n__0) -> 0 activate(n__plus(X1, X2)) -> plus(X1, X2) activate(n__s(X)) -> s(X) activate(n__x(X1, X2)) -> x(X1, X2) activate(X) -> X The (relative) TRS S consists of the following rules: encArg(tt) -> tt encArg(n__0) -> n__0 encArg(n__plus(x_1, x_2)) -> n__plus(encArg(x_1), encArg(x_2)) encArg(n__s(x_1)) -> n__s(encArg(x_1)) encArg(n__x(x_1, x_2)) -> n__x(encArg(x_1), encArg(x_2)) encArg(cons_U11(x_1, x_2)) -> U11(encArg(x_1), encArg(x_2)) encArg(cons_U12(x_1)) -> U12(encArg(x_1)) encArg(cons_U21(x_1)) -> U21(encArg(x_1)) encArg(cons_U31(x_1, x_2)) -> U31(encArg(x_1), encArg(x_2)) encArg(cons_U32(x_1)) -> U32(encArg(x_1)) encArg(cons_U41(x_1, x_2)) -> U41(encArg(x_1), encArg(x_2)) encArg(cons_U51(x_1, x_2, x_3)) -> U51(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_U52(x_1, x_2, x_3)) -> U52(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_U61(x_1)) -> U61(encArg(x_1)) encArg(cons_U71(x_1, x_2, x_3)) -> U71(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_U72(x_1, x_2, x_3)) -> U72(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_isNat(x_1)) -> isNat(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_x(x_1, x_2)) -> x(encArg(x_1), encArg(x_2)) encArg(cons_0) -> 0 encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_U11(x_1, x_2) -> U11(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_U12(x_1) -> U12(encArg(x_1)) encode_isNat(x_1) -> isNat(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) encode_U21(x_1) -> U21(encArg(x_1)) encode_U31(x_1, x_2) -> U31(encArg(x_1), encArg(x_2)) encode_U32(x_1) -> U32(encArg(x_1)) encode_U41(x_1, x_2) -> U41(encArg(x_1), encArg(x_2)) encode_U51(x_1, x_2, x_3) -> U51(encArg(x_1), encArg(x_2), encArg(x_3)) encode_U52(x_1, x_2, x_3) -> U52(encArg(x_1), encArg(x_2), encArg(x_3)) encode_s(x_1) -> s(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_U61(x_1) -> U61(encArg(x_1)) encode_0 -> 0 encode_U71(x_1, x_2, x_3) -> U71(encArg(x_1), encArg(x_2), encArg(x_3)) encode_U72(x_1, x_2, x_3) -> U72(encArg(x_1), encArg(x_2), encArg(x_3)) encode_x(x_1, x_2) -> x(encArg(x_1), encArg(x_2)) encode_n__0 -> n__0 encode_n__plus(x_1, x_2) -> n__plus(encArg(x_1), encArg(x_2)) encode_n__s(x_1) -> n__s(encArg(x_1)) encode_n__x(x_1, x_2) -> n__x(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: U11(tt, V2) -> U12(isNat(activate(V2))) U12(tt) -> tt U21(tt) -> tt U31(tt, V2) -> U32(isNat(activate(V2))) U32(tt) -> tt U41(tt, N) -> activate(N) U51(tt, M, N) -> U52(isNat(activate(N)), activate(M), activate(N)) U52(tt, M, N) -> s(plus(activate(N), activate(M))) U61(tt) -> 0 U71(tt, M, N) -> U72(isNat(activate(N)), activate(M), activate(N)) U72(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) isNat(n__0) -> tt isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) plus(N, 0) -> U41(isNat(N), N) plus(N, s(M)) -> U51(isNat(M), M, N) x(N, 0) -> U61(isNat(N)) x(N, s(M)) -> U71(isNat(M), M, N) 0 -> n__0 plus(X1, X2) -> n__plus(X1, X2) s(X) -> n__s(X) x(X1, X2) -> n__x(X1, X2) activate(n__0) -> 0 activate(n__plus(X1, X2)) -> plus(X1, X2) activate(n__s(X)) -> s(X) activate(n__x(X1, X2)) -> x(X1, X2) activate(X) -> X The (relative) TRS S consists of the following rules: encArg(tt) -> tt encArg(n__0) -> n__0 encArg(n__plus(x_1, x_2)) -> n__plus(encArg(x_1), encArg(x_2)) encArg(n__s(x_1)) -> n__s(encArg(x_1)) encArg(n__x(x_1, x_2)) -> n__x(encArg(x_1), encArg(x_2)) encArg(cons_U11(x_1, x_2)) -> U11(encArg(x_1), encArg(x_2)) encArg(cons_U12(x_1)) -> U12(encArg(x_1)) encArg(cons_U21(x_1)) -> U21(encArg(x_1)) encArg(cons_U31(x_1, x_2)) -> U31(encArg(x_1), encArg(x_2)) encArg(cons_U32(x_1)) -> U32(encArg(x_1)) encArg(cons_U41(x_1, x_2)) -> U41(encArg(x_1), encArg(x_2)) encArg(cons_U51(x_1, x_2, x_3)) -> U51(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_U52(x_1, x_2, x_3)) -> U52(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_U61(x_1)) -> U61(encArg(x_1)) encArg(cons_U71(x_1, x_2, x_3)) -> U71(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_U72(x_1, x_2, x_3)) -> U72(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_isNat(x_1)) -> isNat(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_x(x_1, x_2)) -> x(encArg(x_1), encArg(x_2)) encArg(cons_0) -> 0 encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_U11(x_1, x_2) -> U11(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_U12(x_1) -> U12(encArg(x_1)) encode_isNat(x_1) -> isNat(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) encode_U21(x_1) -> U21(encArg(x_1)) encode_U31(x_1, x_2) -> U31(encArg(x_1), encArg(x_2)) encode_U32(x_1) -> U32(encArg(x_1)) encode_U41(x_1, x_2) -> U41(encArg(x_1), encArg(x_2)) encode_U51(x_1, x_2, x_3) -> U51(encArg(x_1), encArg(x_2), encArg(x_3)) encode_U52(x_1, x_2, x_3) -> U52(encArg(x_1), encArg(x_2), encArg(x_3)) encode_s(x_1) -> s(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_U61(x_1) -> U61(encArg(x_1)) encode_0 -> 0 encode_U71(x_1, x_2, x_3) -> U71(encArg(x_1), encArg(x_2), encArg(x_3)) encode_U72(x_1, x_2, x_3) -> U72(encArg(x_1), encArg(x_2), encArg(x_3)) encode_x(x_1, x_2) -> x(encArg(x_1), encArg(x_2)) encode_n__0 -> n__0 encode_n__plus(x_1, x_2) -> n__plus(encArg(x_1), encArg(x_2)) encode_n__s(x_1) -> n__s(encArg(x_1)) encode_n__x(x_1, x_2) -> n__x(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST