/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 228 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(a, b, X) -> a__f(mark(X), X, mark(X)) a__c -> a a__c -> b mark(f(X1, X2, X3)) -> a__f(mark(X1), X2, mark(X3)) mark(c) -> a__c mark(a) -> a mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__c -> c S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a) -> a encArg(b) -> b encArg(f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(c) -> c encArg(cons_a__f(x_1, x_2, x_3)) -> a__f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_a__c) -> a__c encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1, x_2, x_3) -> a__f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_a -> a encode_b -> b encode_mark(x_1) -> mark(encArg(x_1)) encode_a__c -> a__c encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_c -> c ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(a, b, X) -> a__f(mark(X), X, mark(X)) a__c -> a a__c -> b mark(f(X1, X2, X3)) -> a__f(mark(X1), X2, mark(X3)) mark(c) -> a__c mark(a) -> a mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__c -> c The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(c) -> c encArg(cons_a__f(x_1, x_2, x_3)) -> a__f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_a__c) -> a__c encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1, x_2, x_3) -> a__f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_a -> a encode_b -> b encode_mark(x_1) -> mark(encArg(x_1)) encode_a__c -> a__c encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_c -> c Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(a, b, X) -> a__f(mark(X), X, mark(X)) a__c -> a a__c -> b mark(f(X1, X2, X3)) -> a__f(mark(X1), X2, mark(X3)) mark(c) -> a__c mark(a) -> a mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__c -> c The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(c) -> c encArg(cons_a__f(x_1, x_2, x_3)) -> a__f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_a__c) -> a__c encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1, x_2, x_3) -> a__f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_a -> a encode_b -> b encode_mark(x_1) -> mark(encArg(x_1)) encode_a__c -> a__c encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_c -> c Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(a, b, X) -> a__f(mark(X), X, mark(X)) a__c -> a a__c -> b mark(f(X1, X2, X3)) -> a__f(mark(X1), X2, mark(X3)) mark(c) -> a__c mark(a) -> a mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__c -> c The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(c) -> c encArg(cons_a__f(x_1, x_2, x_3)) -> a__f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_a__c) -> a__c encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1, x_2, x_3) -> a__f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_a -> a encode_b -> b encode_mark(x_1) -> mark(encArg(x_1)) encode_a__c -> a__c encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_c -> c Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence mark(f(X1, X2, X3)) ->^+ a__f(mark(X1), X2, mark(X3)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X1 / f(X1, X2, X3)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(a, b, X) -> a__f(mark(X), X, mark(X)) a__c -> a a__c -> b mark(f(X1, X2, X3)) -> a__f(mark(X1), X2, mark(X3)) mark(c) -> a__c mark(a) -> a mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__c -> c The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(c) -> c encArg(cons_a__f(x_1, x_2, x_3)) -> a__f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_a__c) -> a__c encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1, x_2, x_3) -> a__f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_a -> a encode_b -> b encode_mark(x_1) -> mark(encArg(x_1)) encode_a__c -> a__c encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_c -> c Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(a, b, X) -> a__f(mark(X), X, mark(X)) a__c -> a a__c -> b mark(f(X1, X2, X3)) -> a__f(mark(X1), X2, mark(X3)) mark(c) -> a__c mark(a) -> a mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__c -> c The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(c) -> c encArg(cons_a__f(x_1, x_2, x_3)) -> a__f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_a__c) -> a__c encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1, x_2, x_3) -> a__f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_a -> a encode_b -> b encode_mark(x_1) -> mark(encArg(x_1)) encode_a__c -> a__c encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_c -> c Rewrite Strategy: INNERMOST