/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 360 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 1 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(minus(0, Y)) -> mark(0) active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0)) -> mark(true) active(geq(0, s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0, s(Y))) -> mark(0) active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(s(X)) -> s(active(X)) active(div(X1, X2)) -> div(active(X1), X2) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) s(mark(X)) -> mark(s(X)) div(mark(X1), X2) -> mark(div(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) proper(minus(X1, X2)) -> minus(proper(X1), proper(X2)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(geq(X1, X2)) -> geq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(div(X1, X2)) -> div(proper(X1), proper(X2)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) minus(ok(X1), ok(X2)) -> ok(minus(X1, X2)) s(ok(X)) -> ok(s(X)) geq(ok(X1), ok(X2)) -> ok(geq(X1, X2)) div(ok(X1), ok(X2)) -> ok(div(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_geq(x_1, x_2)) -> geq(encArg(x_1), encArg(x_2)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_mark(x_1) -> mark(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_geq(x_1, x_2) -> geq(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_top(x_1) -> top(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(minus(0, Y)) -> mark(0) active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0)) -> mark(true) active(geq(0, s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0, s(Y))) -> mark(0) active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(s(X)) -> s(active(X)) active(div(X1, X2)) -> div(active(X1), X2) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) s(mark(X)) -> mark(s(X)) div(mark(X1), X2) -> mark(div(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) proper(minus(X1, X2)) -> minus(proper(X1), proper(X2)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(geq(X1, X2)) -> geq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(div(X1, X2)) -> div(proper(X1), proper(X2)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) minus(ok(X1), ok(X2)) -> ok(minus(X1, X2)) s(ok(X)) -> ok(s(X)) geq(ok(X1), ok(X2)) -> ok(geq(X1, X2)) div(ok(X1), ok(X2)) -> ok(div(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_geq(x_1, x_2)) -> geq(encArg(x_1), encArg(x_2)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_mark(x_1) -> mark(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_geq(x_1, x_2) -> geq(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_top(x_1) -> top(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(minus(0, Y)) -> mark(0) active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0)) -> mark(true) active(geq(0, s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0, s(Y))) -> mark(0) active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(s(X)) -> s(active(X)) active(div(X1, X2)) -> div(active(X1), X2) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) s(mark(X)) -> mark(s(X)) div(mark(X1), X2) -> mark(div(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) proper(minus(X1, X2)) -> minus(proper(X1), proper(X2)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(geq(X1, X2)) -> geq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(div(X1, X2)) -> div(proper(X1), proper(X2)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) minus(ok(X1), ok(X2)) -> ok(minus(X1, X2)) s(ok(X)) -> ok(s(X)) geq(ok(X1), ok(X2)) -> ok(geq(X1, X2)) div(ok(X1), ok(X2)) -> ok(div(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_geq(x_1, x_2)) -> geq(encArg(x_1), encArg(x_2)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_mark(x_1) -> mark(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_geq(x_1, x_2) -> geq(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_top(x_1) -> top(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(minus(0, Y)) -> mark(0) active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0)) -> mark(true) active(geq(0, s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0, s(Y))) -> mark(0) active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(s(X)) -> s(active(X)) active(div(X1, X2)) -> div(active(X1), X2) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) s(mark(X)) -> mark(s(X)) div(mark(X1), X2) -> mark(div(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) proper(minus(X1, X2)) -> minus(proper(X1), proper(X2)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(geq(X1, X2)) -> geq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(div(X1, X2)) -> div(proper(X1), proper(X2)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) minus(ok(X1), ok(X2)) -> ok(minus(X1, X2)) s(ok(X)) -> ok(s(X)) geq(ok(X1), ok(X2)) -> ok(geq(X1, X2)) div(ok(X1), ok(X2)) -> ok(div(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_geq(x_1, x_2)) -> geq(encArg(x_1), encArg(x_2)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_mark(x_1) -> mark(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_geq(x_1, x_2) -> geq(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_top(x_1) -> top(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence div(mark(X1), X2) ->^+ mark(div(X1, X2)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X1 / mark(X1)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(minus(0, Y)) -> mark(0) active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0)) -> mark(true) active(geq(0, s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0, s(Y))) -> mark(0) active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(s(X)) -> s(active(X)) active(div(X1, X2)) -> div(active(X1), X2) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) s(mark(X)) -> mark(s(X)) div(mark(X1), X2) -> mark(div(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) proper(minus(X1, X2)) -> minus(proper(X1), proper(X2)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(geq(X1, X2)) -> geq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(div(X1, X2)) -> div(proper(X1), proper(X2)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) minus(ok(X1), ok(X2)) -> ok(minus(X1, X2)) s(ok(X)) -> ok(s(X)) geq(ok(X1), ok(X2)) -> ok(geq(X1, X2)) div(ok(X1), ok(X2)) -> ok(div(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_geq(x_1, x_2)) -> geq(encArg(x_1), encArg(x_2)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_mark(x_1) -> mark(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_geq(x_1, x_2) -> geq(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_top(x_1) -> top(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(minus(0, Y)) -> mark(0) active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0)) -> mark(true) active(geq(0, s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0, s(Y))) -> mark(0) active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(s(X)) -> s(active(X)) active(div(X1, X2)) -> div(active(X1), X2) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) s(mark(X)) -> mark(s(X)) div(mark(X1), X2) -> mark(div(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) proper(minus(X1, X2)) -> minus(proper(X1), proper(X2)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(geq(X1, X2)) -> geq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(div(X1, X2)) -> div(proper(X1), proper(X2)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) minus(ok(X1), ok(X2)) -> ok(minus(X1, X2)) s(ok(X)) -> ok(s(X)) geq(ok(X1), ok(X2)) -> ok(geq(X1, X2)) div(ok(X1), ok(X2)) -> ok(div(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_div(x_1, x_2)) -> div(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_geq(x_1, x_2)) -> geq(encArg(x_1), encArg(x_2)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_mark(x_1) -> mark(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_geq(x_1, x_2) -> geq(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_div(x_1, x_2) -> div(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_top(x_1) -> top(encArg(x_1)) Rewrite Strategy: INNERMOST