/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 85 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (12) CdtProblem (13) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 107 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 34 ms] (18) CdtProblem (19) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 52 ms] (20) CdtProblem (21) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 43 ms] (22) CdtProblem (23) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (24) BOUNDS(1, 1) (25) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (26) TRS for Loop Detection (27) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (28) BEST (29) proven lower bound (30) LowerBoundPropagationProof [FINISHED, 0 ms] (31) BOUNDS(n^1, INF) (32) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(f(a)) -> f(g(n__f(n__a))) f(X) -> n__f(X) a -> n__a activate(n__f(X)) -> f(activate(X)) activate(n__a) -> a activate(X) -> X S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(g(x_1)) -> g(encArg(x_1)) encArg(n__f(x_1)) -> n__f(encArg(x_1)) encArg(n__a) -> n__a encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_a) -> a encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_n__f(x_1) -> n__f(encArg(x_1)) encode_n__a -> n__a encode_activate(x_1) -> activate(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(f(a)) -> f(g(n__f(n__a))) f(X) -> n__f(X) a -> n__a activate(n__f(X)) -> f(activate(X)) activate(n__a) -> a activate(X) -> X The (relative) TRS S consists of the following rules: encArg(g(x_1)) -> g(encArg(x_1)) encArg(n__f(x_1)) -> n__f(encArg(x_1)) encArg(n__a) -> n__a encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_a) -> a encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_n__f(x_1) -> n__f(encArg(x_1)) encode_n__a -> n__a encode_activate(x_1) -> activate(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(f(a)) -> f(g(n__f(n__a))) f(X) -> n__f(X) a -> n__a activate(n__f(X)) -> f(activate(X)) activate(n__a) -> a activate(X) -> X The (relative) TRS S consists of the following rules: encArg(g(x_1)) -> g(encArg(x_1)) encArg(n__f(x_1)) -> n__f(encArg(x_1)) encArg(n__a) -> n__a encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_a) -> a encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_n__f(x_1) -> n__f(encArg(x_1)) encode_n__a -> n__a encode_activate(x_1) -> activate(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(g(z0)) -> g(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_g(z0) -> g(encArg(z0)) encode_n__f(z0) -> n__f(encArg(z0)) encode_n__a -> n__a encode_activate(z0) -> activate(encArg(z0)) f(f(a)) -> f(g(n__f(n__a))) f(z0) -> n__f(z0) a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(g(z0)) -> c(ENCARG(z0)) ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(n__a) -> c2 ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c4(A) ENCARG(cons_activate(z0)) -> c5(ACTIVATE(encArg(z0)), ENCARG(z0)) ENCODE_F(z0) -> c6(F(encArg(z0)), ENCARG(z0)) ENCODE_A -> c7(A) ENCODE_G(z0) -> c8(ENCARG(z0)) ENCODE_N__F(z0) -> c9(ENCARG(z0)) ENCODE_N__A -> c10 ENCODE_ACTIVATE(z0) -> c11(ACTIVATE(encArg(z0)), ENCARG(z0)) F(f(a)) -> c12(F(g(n__f(n__a)))) F(z0) -> c13 A -> c14 ACTIVATE(n__f(z0)) -> c15(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c16(A) ACTIVATE(z0) -> c17 S tuples: F(f(a)) -> c12(F(g(n__f(n__a)))) F(z0) -> c13 A -> c14 ACTIVATE(n__f(z0)) -> c15(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c16(A) ACTIVATE(z0) -> c17 K tuples:none Defined Rule Symbols: f_1, a, activate_1, encArg_1, encode_f_1, encode_a, encode_g_1, encode_n__f_1, encode_n__a, encode_activate_1 Defined Pair Symbols: ENCARG_1, ENCODE_F_1, ENCODE_A, ENCODE_G_1, ENCODE_N__F_1, ENCODE_N__A, ENCODE_ACTIVATE_1, F_1, A, ACTIVATE_1 Compound Symbols: c_1, c1_1, c2, c3_2, c4_1, c5_2, c6_2, c7_1, c8_1, c9_1, c10, c11_2, c12_1, c13, c14, c15_2, c16_1, c17 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 4 leading nodes: ENCODE_G(z0) -> c8(ENCARG(z0)) ENCODE_N__F(z0) -> c9(ENCARG(z0)) ENCODE_A -> c7(A) F(f(a)) -> c12(F(g(n__f(n__a)))) Removed 2 trailing nodes: ENCODE_N__A -> c10 ENCARG(n__a) -> c2 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(g(z0)) -> g(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_g(z0) -> g(encArg(z0)) encode_n__f(z0) -> n__f(encArg(z0)) encode_n__a -> n__a encode_activate(z0) -> activate(encArg(z0)) f(f(a)) -> f(g(n__f(n__a))) f(z0) -> n__f(z0) a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(g(z0)) -> c(ENCARG(z0)) ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c4(A) ENCARG(cons_activate(z0)) -> c5(ACTIVATE(encArg(z0)), ENCARG(z0)) ENCODE_F(z0) -> c6(F(encArg(z0)), ENCARG(z0)) ENCODE_ACTIVATE(z0) -> c11(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c13 A -> c14 ACTIVATE(n__f(z0)) -> c15(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c16(A) ACTIVATE(z0) -> c17 S tuples: F(z0) -> c13 A -> c14 ACTIVATE(n__f(z0)) -> c15(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c16(A) ACTIVATE(z0) -> c17 K tuples:none Defined Rule Symbols: f_1, a, activate_1, encArg_1, encode_f_1, encode_a, encode_g_1, encode_n__f_1, encode_n__a, encode_activate_1 Defined Pair Symbols: ENCARG_1, ENCODE_F_1, ENCODE_ACTIVATE_1, F_1, A, ACTIVATE_1 Compound Symbols: c_1, c1_1, c3_2, c4_1, c5_2, c6_2, c11_2, c13, c14, c15_2, c16_1, c17 ---------------------------------------- (9) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(g(z0)) -> g(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_g(z0) -> g(encArg(z0)) encode_n__f(z0) -> n__f(encArg(z0)) encode_n__a -> n__a encode_activate(z0) -> activate(encArg(z0)) f(f(a)) -> f(g(n__f(n__a))) f(z0) -> n__f(z0) a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(g(z0)) -> c(ENCARG(z0)) ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c4(A) ENCARG(cons_activate(z0)) -> c5(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c13 A -> c14 ACTIVATE(n__f(z0)) -> c15(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c16(A) ACTIVATE(z0) -> c17 ENCODE_F(z0) -> c2(F(encArg(z0))) ENCODE_F(z0) -> c2(ENCARG(z0)) ENCODE_ACTIVATE(z0) -> c2(ACTIVATE(encArg(z0))) ENCODE_ACTIVATE(z0) -> c2(ENCARG(z0)) S tuples: F(z0) -> c13 A -> c14 ACTIVATE(n__f(z0)) -> c15(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c16(A) ACTIVATE(z0) -> c17 K tuples:none Defined Rule Symbols: f_1, a, activate_1, encArg_1, encode_f_1, encode_a, encode_g_1, encode_n__f_1, encode_n__a, encode_activate_1 Defined Pair Symbols: ENCARG_1, F_1, A, ACTIVATE_1, ENCODE_F_1, ENCODE_ACTIVATE_1 Compound Symbols: c_1, c1_1, c3_2, c4_1, c5_2, c13, c14, c15_2, c16_1, c17, c2_1 ---------------------------------------- (11) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_F(z0) -> c2(ENCARG(z0)) ENCODE_ACTIVATE(z0) -> c2(ENCARG(z0)) ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(g(z0)) -> g(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_g(z0) -> g(encArg(z0)) encode_n__f(z0) -> n__f(encArg(z0)) encode_n__a -> n__a encode_activate(z0) -> activate(encArg(z0)) f(f(a)) -> f(g(n__f(n__a))) f(z0) -> n__f(z0) a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(g(z0)) -> c(ENCARG(z0)) ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c4(A) ENCARG(cons_activate(z0)) -> c5(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c13 A -> c14 ACTIVATE(n__f(z0)) -> c15(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c16(A) ACTIVATE(z0) -> c17 ENCODE_F(z0) -> c2(F(encArg(z0))) ENCODE_ACTIVATE(z0) -> c2(ACTIVATE(encArg(z0))) S tuples: F(z0) -> c13 A -> c14 ACTIVATE(n__f(z0)) -> c15(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c16(A) ACTIVATE(z0) -> c17 K tuples:none Defined Rule Symbols: f_1, a, activate_1, encArg_1, encode_f_1, encode_a, encode_g_1, encode_n__f_1, encode_n__a, encode_activate_1 Defined Pair Symbols: ENCARG_1, F_1, A, ACTIVATE_1, ENCODE_F_1, ENCODE_ACTIVATE_1 Compound Symbols: c_1, c1_1, c3_2, c4_1, c5_2, c13, c14, c15_2, c16_1, c17, c2_1 ---------------------------------------- (13) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_g(z0) -> g(encArg(z0)) encode_n__f(z0) -> n__f(encArg(z0)) encode_n__a -> n__a encode_activate(z0) -> activate(encArg(z0)) f(f(a)) -> f(g(n__f(n__a))) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(g(z0)) -> g(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) f(z0) -> n__f(z0) a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(g(z0)) -> c(ENCARG(z0)) ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c4(A) ENCARG(cons_activate(z0)) -> c5(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c13 A -> c14 ACTIVATE(n__f(z0)) -> c15(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c16(A) ACTIVATE(z0) -> c17 ENCODE_F(z0) -> c2(F(encArg(z0))) ENCODE_ACTIVATE(z0) -> c2(ACTIVATE(encArg(z0))) S tuples: F(z0) -> c13 A -> c14 ACTIVATE(n__f(z0)) -> c15(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c16(A) ACTIVATE(z0) -> c17 K tuples:none Defined Rule Symbols: encArg_1, f_1, a, activate_1 Defined Pair Symbols: ENCARG_1, F_1, A, ACTIVATE_1, ENCODE_F_1, ENCODE_ACTIVATE_1 Compound Symbols: c_1, c1_1, c3_2, c4_1, c5_2, c13, c14, c15_2, c16_1, c17, c2_1 ---------------------------------------- (15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. ACTIVATE(n__a) -> c16(A) ACTIVATE(z0) -> c17 We considered the (Usable) Rules:none And the Tuples: ENCARG(g(z0)) -> c(ENCARG(z0)) ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c4(A) ENCARG(cons_activate(z0)) -> c5(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c13 A -> c14 ACTIVATE(n__f(z0)) -> c15(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c16(A) ACTIVATE(z0) -> c17 ENCODE_F(z0) -> c2(F(encArg(z0))) ENCODE_ACTIVATE(z0) -> c2(ACTIVATE(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A) = 0 POL(ACTIVATE(x_1)) = [1] POL(ENCARG(x_1)) = [1] + x_1 POL(ENCODE_ACTIVATE(x_1)) = [1] + x_1 POL(ENCODE_F(x_1)) = 0 POL(F(x_1)) = 0 POL(a) = [1] POL(activate(x_1)) = [1] + x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c13) = 0 POL(c14) = 0 POL(c15(x_1, x_2)) = x_1 + x_2 POL(c16(x_1)) = x_1 POL(c17) = 0 POL(c2(x_1)) = x_1 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1)) = x_1 POL(c5(x_1, x_2)) = x_1 + x_2 POL(cons_a) = [1] POL(cons_activate(x_1)) = [1] + x_1 POL(cons_f(x_1)) = [1] + x_1 POL(encArg(x_1)) = [1] + x_1 POL(f(x_1)) = [1] + x_1 POL(g(x_1)) = [1] + x_1 POL(n__a) = [1] POL(n__f(x_1)) = [1] + x_1 ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(g(z0)) -> g(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) f(z0) -> n__f(z0) a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(g(z0)) -> c(ENCARG(z0)) ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c4(A) ENCARG(cons_activate(z0)) -> c5(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c13 A -> c14 ACTIVATE(n__f(z0)) -> c15(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c16(A) ACTIVATE(z0) -> c17 ENCODE_F(z0) -> c2(F(encArg(z0))) ENCODE_ACTIVATE(z0) -> c2(ACTIVATE(encArg(z0))) S tuples: F(z0) -> c13 A -> c14 ACTIVATE(n__f(z0)) -> c15(F(activate(z0)), ACTIVATE(z0)) K tuples: ACTIVATE(n__a) -> c16(A) ACTIVATE(z0) -> c17 Defined Rule Symbols: encArg_1, f_1, a, activate_1 Defined Pair Symbols: ENCARG_1, F_1, A, ACTIVATE_1, ENCODE_F_1, ENCODE_ACTIVATE_1 Compound Symbols: c_1, c1_1, c3_2, c4_1, c5_2, c13, c14, c15_2, c16_1, c17, c2_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. A -> c14 We considered the (Usable) Rules:none And the Tuples: ENCARG(g(z0)) -> c(ENCARG(z0)) ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c4(A) ENCARG(cons_activate(z0)) -> c5(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c13 A -> c14 ACTIVATE(n__f(z0)) -> c15(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c16(A) ACTIVATE(z0) -> c17 ENCODE_F(z0) -> c2(F(encArg(z0))) ENCODE_ACTIVATE(z0) -> c2(ACTIVATE(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A) = [1] POL(ACTIVATE(x_1)) = [1] POL(ENCARG(x_1)) = x_1 POL(ENCODE_ACTIVATE(x_1)) = [1] POL(ENCODE_F(x_1)) = 0 POL(F(x_1)) = 0 POL(a) = [1] POL(activate(x_1)) = [1] + x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c13) = 0 POL(c14) = 0 POL(c15(x_1, x_2)) = x_1 + x_2 POL(c16(x_1)) = x_1 POL(c17) = 0 POL(c2(x_1)) = x_1 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1)) = x_1 POL(c5(x_1, x_2)) = x_1 + x_2 POL(cons_a) = [1] POL(cons_activate(x_1)) = [1] + x_1 POL(cons_f(x_1)) = [1] + x_1 POL(encArg(x_1)) = [1] + x_1 POL(f(x_1)) = [1] + x_1 POL(g(x_1)) = [1] + x_1 POL(n__a) = [1] POL(n__f(x_1)) = [1] + x_1 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(g(z0)) -> g(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) f(z0) -> n__f(z0) a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(g(z0)) -> c(ENCARG(z0)) ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c4(A) ENCARG(cons_activate(z0)) -> c5(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c13 A -> c14 ACTIVATE(n__f(z0)) -> c15(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c16(A) ACTIVATE(z0) -> c17 ENCODE_F(z0) -> c2(F(encArg(z0))) ENCODE_ACTIVATE(z0) -> c2(ACTIVATE(encArg(z0))) S tuples: F(z0) -> c13 ACTIVATE(n__f(z0)) -> c15(F(activate(z0)), ACTIVATE(z0)) K tuples: ACTIVATE(n__a) -> c16(A) ACTIVATE(z0) -> c17 A -> c14 Defined Rule Symbols: encArg_1, f_1, a, activate_1 Defined Pair Symbols: ENCARG_1, F_1, A, ACTIVATE_1, ENCODE_F_1, ENCODE_ACTIVATE_1 Compound Symbols: c_1, c1_1, c3_2, c4_1, c5_2, c13, c14, c15_2, c16_1, c17, c2_1 ---------------------------------------- (19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. ACTIVATE(n__f(z0)) -> c15(F(activate(z0)), ACTIVATE(z0)) We considered the (Usable) Rules: encArg(n__a) -> n__a encArg(cons_a) -> a f(z0) -> n__f(z0) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) activate(z0) -> z0 activate(n__a) -> a activate(n__f(z0)) -> f(activate(z0)) encArg(g(z0)) -> g(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) a -> n__a And the Tuples: ENCARG(g(z0)) -> c(ENCARG(z0)) ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c4(A) ENCARG(cons_activate(z0)) -> c5(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c13 A -> c14 ACTIVATE(n__f(z0)) -> c15(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c16(A) ACTIVATE(z0) -> c17 ENCODE_F(z0) -> c2(F(encArg(z0))) ENCODE_ACTIVATE(z0) -> c2(ACTIVATE(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A) = 0 POL(ACTIVATE(x_1)) = x_1 POL(ENCARG(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(ENCODE_ACTIVATE(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(ENCODE_F(x_1)) = [2] + [2]x_1 + x_1^2 POL(F(x_1)) = 0 POL(a) = 0 POL(activate(x_1)) = x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c13) = 0 POL(c14) = 0 POL(c15(x_1, x_2)) = x_1 + x_2 POL(c16(x_1)) = x_1 POL(c17) = 0 POL(c2(x_1)) = x_1 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1)) = x_1 POL(c5(x_1, x_2)) = x_1 + x_2 POL(cons_a) = 0 POL(cons_activate(x_1)) = [2] + x_1 POL(cons_f(x_1)) = [2] + x_1 POL(encArg(x_1)) = [2]x_1 POL(f(x_1)) = [2] + x_1 POL(g(x_1)) = x_1 POL(n__a) = 0 POL(n__f(x_1)) = [2] + x_1 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(g(z0)) -> g(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) f(z0) -> n__f(z0) a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(g(z0)) -> c(ENCARG(z0)) ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c4(A) ENCARG(cons_activate(z0)) -> c5(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c13 A -> c14 ACTIVATE(n__f(z0)) -> c15(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c16(A) ACTIVATE(z0) -> c17 ENCODE_F(z0) -> c2(F(encArg(z0))) ENCODE_ACTIVATE(z0) -> c2(ACTIVATE(encArg(z0))) S tuples: F(z0) -> c13 K tuples: ACTIVATE(n__a) -> c16(A) ACTIVATE(z0) -> c17 A -> c14 ACTIVATE(n__f(z0)) -> c15(F(activate(z0)), ACTIVATE(z0)) Defined Rule Symbols: encArg_1, f_1, a, activate_1 Defined Pair Symbols: ENCARG_1, F_1, A, ACTIVATE_1, ENCODE_F_1, ENCODE_ACTIVATE_1 Compound Symbols: c_1, c1_1, c3_2, c4_1, c5_2, c13, c14, c15_2, c16_1, c17, c2_1 ---------------------------------------- (21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(z0) -> c13 We considered the (Usable) Rules: encArg(n__a) -> n__a encArg(cons_a) -> a f(z0) -> n__f(z0) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) activate(z0) -> z0 activate(n__a) -> a activate(n__f(z0)) -> f(activate(z0)) encArg(g(z0)) -> g(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) a -> n__a And the Tuples: ENCARG(g(z0)) -> c(ENCARG(z0)) ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c4(A) ENCARG(cons_activate(z0)) -> c5(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c13 A -> c14 ACTIVATE(n__f(z0)) -> c15(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c16(A) ACTIVATE(z0) -> c17 ENCODE_F(z0) -> c2(F(encArg(z0))) ENCODE_ACTIVATE(z0) -> c2(ACTIVATE(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A) = 0 POL(ACTIVATE(x_1)) = x_1 POL(ENCARG(x_1)) = [2] + [2]x_1^2 POL(ENCODE_ACTIVATE(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(ENCODE_F(x_1)) = [1] + x_1^2 POL(F(x_1)) = [1] POL(a) = 0 POL(activate(x_1)) = x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c13) = 0 POL(c14) = 0 POL(c15(x_1, x_2)) = x_1 + x_2 POL(c16(x_1)) = x_1 POL(c17) = 0 POL(c2(x_1)) = x_1 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1)) = x_1 POL(c5(x_1, x_2)) = x_1 + x_2 POL(cons_a) = 0 POL(cons_activate(x_1)) = [1] + x_1 POL(cons_f(x_1)) = [2] + x_1 POL(encArg(x_1)) = x_1 POL(f(x_1)) = [1] + x_1 POL(g(x_1)) = x_1 POL(n__a) = 0 POL(n__f(x_1)) = [1] + x_1 ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: encArg(g(z0)) -> g(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) f(z0) -> n__f(z0) a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(g(z0)) -> c(ENCARG(z0)) ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c4(A) ENCARG(cons_activate(z0)) -> c5(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c13 A -> c14 ACTIVATE(n__f(z0)) -> c15(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c16(A) ACTIVATE(z0) -> c17 ENCODE_F(z0) -> c2(F(encArg(z0))) ENCODE_ACTIVATE(z0) -> c2(ACTIVATE(encArg(z0))) S tuples:none K tuples: ACTIVATE(n__a) -> c16(A) ACTIVATE(z0) -> c17 A -> c14 ACTIVATE(n__f(z0)) -> c15(F(activate(z0)), ACTIVATE(z0)) F(z0) -> c13 Defined Rule Symbols: encArg_1, f_1, a, activate_1 Defined Pair Symbols: ENCARG_1, F_1, A, ACTIVATE_1, ENCODE_F_1, ENCODE_ACTIVATE_1 Compound Symbols: c_1, c1_1, c3_2, c4_1, c5_2, c13, c14, c15_2, c16_1, c17, c2_1 ---------------------------------------- (23) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (24) BOUNDS(1, 1) ---------------------------------------- (25) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (26) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(f(a)) -> f(g(n__f(n__a))) f(X) -> n__f(X) a -> n__a activate(n__f(X)) -> f(activate(X)) activate(n__a) -> a activate(X) -> X The (relative) TRS S consists of the following rules: encArg(g(x_1)) -> g(encArg(x_1)) encArg(n__f(x_1)) -> n__f(encArg(x_1)) encArg(n__a) -> n__a encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_a) -> a encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_n__f(x_1) -> n__f(encArg(x_1)) encode_n__a -> n__a encode_activate(x_1) -> activate(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (27) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence activate(n__f(X)) ->^+ f(activate(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / n__f(X)]. The result substitution is [ ]. ---------------------------------------- (28) Complex Obligation (BEST) ---------------------------------------- (29) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(f(a)) -> f(g(n__f(n__a))) f(X) -> n__f(X) a -> n__a activate(n__f(X)) -> f(activate(X)) activate(n__a) -> a activate(X) -> X The (relative) TRS S consists of the following rules: encArg(g(x_1)) -> g(encArg(x_1)) encArg(n__f(x_1)) -> n__f(encArg(x_1)) encArg(n__a) -> n__a encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_a) -> a encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_n__f(x_1) -> n__f(encArg(x_1)) encode_n__a -> n__a encode_activate(x_1) -> activate(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (30) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (31) BOUNDS(n^1, INF) ---------------------------------------- (32) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(f(a)) -> f(g(n__f(n__a))) f(X) -> n__f(X) a -> n__a activate(n__f(X)) -> f(activate(X)) activate(n__a) -> a activate(X) -> X The (relative) TRS S consists of the following rules: encArg(g(x_1)) -> g(encArg(x_1)) encArg(n__f(x_1)) -> n__f(encArg(x_1)) encArg(n__a) -> n__a encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_a) -> a encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_n__f(x_1) -> n__f(encArg(x_1)) encode_n__a -> n__a encode_activate(x_1) -> activate(encArg(x_1)) Rewrite Strategy: INNERMOST