/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 198 ms] (4) CpxRelTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 27 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) InliningProof [UPPER BOUND(ID), 147 ms] (16) CpxRNTS (17) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 2 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 95 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 3 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 128 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 42 ms] (32) CpxRNTS (33) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 157 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 52 ms] (38) CpxRNTS (39) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 97 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 291 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 83 ms] (50) CpxRNTS (51) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (52) CpxRNTS (53) IntTrsBoundProof [UPPER BOUND(ID), 1030 ms] (54) CpxRNTS (55) IntTrsBoundProof [UPPER BOUND(ID), 420 ms] (56) CpxRNTS (57) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (58) CpxRNTS (59) IntTrsBoundProof [UPPER BOUND(ID), 168 ms] (60) CpxRNTS (61) IntTrsBoundProof [UPPER BOUND(ID), 4 ms] (62) CpxRNTS (63) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (64) CpxRNTS (65) IntTrsBoundProof [UPPER BOUND(ID), 458 ms] (66) CpxRNTS (67) IntTrsBoundProof [UPPER BOUND(ID), 17 ms] (68) CpxRNTS (69) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (70) CpxRNTS (71) IntTrsBoundProof [UPPER BOUND(ID), 187 ms] (72) CpxRNTS (73) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (74) CpxRNTS (75) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (76) CpxRNTS (77) IntTrsBoundProof [UPPER BOUND(ID), 146 ms] (78) CpxRNTS (79) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (80) CpxRNTS (81) FinalProof [FINISHED, 0 ms] (82) BOUNDS(1, n^2) (83) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (84) TRS for Loop Detection (85) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (86) BEST (87) proven lower bound (88) LowerBoundPropagationProof [FINISHED, 0 ms] (89) BOUNDS(n^1, INF) (90) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: and(tt, X) -> activate(X) plus(N, 0) -> N plus(N, s(M)) -> s(plus(N, M)) activate(X) -> X S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(tt) -> tt encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_activate(x_1) -> activate(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: and(tt, X) -> activate(X) plus(N, 0) -> N plus(N, s(M)) -> s(plus(N, M)) activate(X) -> X The (relative) TRS S consists of the following rules: encArg(tt) -> tt encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_activate(x_1) -> activate(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: and(tt, X) -> activate(X) plus(N, 0) -> N plus(N, s(M)) -> s(plus(N, M)) activate(X) -> X The (relative) TRS S consists of the following rules: encArg(tt) -> tt encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_activate(x_1) -> activate(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: and(tt, X) -> activate(X) [1] plus(N, 0) -> N [1] plus(N, s(M)) -> s(plus(N, M)) [1] activate(X) -> X [1] encArg(tt) -> tt [0] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) [0] encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) [0] encArg(cons_activate(x_1)) -> activate(encArg(x_1)) [0] encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) [0] encode_tt -> tt [0] encode_activate(x_1) -> activate(encArg(x_1)) [0] encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: and(tt, X) -> activate(X) [1] plus(N, 0) -> N [1] plus(N, s(M)) -> s(plus(N, M)) [1] activate(X) -> X [1] encArg(tt) -> tt [0] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) [0] encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) [0] encArg(cons_activate(x_1)) -> activate(encArg(x_1)) [0] encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) [0] encode_tt -> tt [0] encode_activate(x_1) -> activate(encArg(x_1)) [0] encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] The TRS has the following type information: and :: tt:0:s:cons_and:cons_plus:cons_activate -> tt:0:s:cons_and:cons_plus:cons_activate -> tt:0:s:cons_and:cons_plus:cons_activate tt :: tt:0:s:cons_and:cons_plus:cons_activate activate :: tt:0:s:cons_and:cons_plus:cons_activate -> tt:0:s:cons_and:cons_plus:cons_activate plus :: tt:0:s:cons_and:cons_plus:cons_activate -> tt:0:s:cons_and:cons_plus:cons_activate -> tt:0:s:cons_and:cons_plus:cons_activate 0 :: tt:0:s:cons_and:cons_plus:cons_activate s :: tt:0:s:cons_and:cons_plus:cons_activate -> tt:0:s:cons_and:cons_plus:cons_activate encArg :: tt:0:s:cons_and:cons_plus:cons_activate -> tt:0:s:cons_and:cons_plus:cons_activate cons_and :: tt:0:s:cons_and:cons_plus:cons_activate -> tt:0:s:cons_and:cons_plus:cons_activate -> tt:0:s:cons_and:cons_plus:cons_activate cons_plus :: tt:0:s:cons_and:cons_plus:cons_activate -> tt:0:s:cons_and:cons_plus:cons_activate -> tt:0:s:cons_and:cons_plus:cons_activate cons_activate :: tt:0:s:cons_and:cons_plus:cons_activate -> tt:0:s:cons_and:cons_plus:cons_activate encode_and :: tt:0:s:cons_and:cons_plus:cons_activate -> tt:0:s:cons_and:cons_plus:cons_activate -> tt:0:s:cons_and:cons_plus:cons_activate encode_tt :: tt:0:s:cons_and:cons_plus:cons_activate encode_activate :: tt:0:s:cons_and:cons_plus:cons_activate -> tt:0:s:cons_and:cons_plus:cons_activate encode_plus :: tt:0:s:cons_and:cons_plus:cons_activate -> tt:0:s:cons_and:cons_plus:cons_activate -> tt:0:s:cons_and:cons_plus:cons_activate encode_0 :: tt:0:s:cons_and:cons_plus:cons_activate encode_s :: tt:0:s:cons_and:cons_plus:cons_activate -> tt:0:s:cons_and:cons_plus:cons_activate Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: plus_2 and_2 activate_1 encArg_1 encode_and_2 encode_tt encode_activate_1 encode_plus_2 encode_0 encode_s_1 Due to the following rules being added: encArg(v0) -> null_encArg [0] encode_and(v0, v1) -> null_encode_and [0] encode_tt -> null_encode_tt [0] encode_activate(v0) -> null_encode_activate [0] encode_plus(v0, v1) -> null_encode_plus [0] encode_0 -> null_encode_0 [0] encode_s(v0) -> null_encode_s [0] plus(v0, v1) -> null_plus [0] and(v0, v1) -> null_and [0] And the following fresh constants: null_encArg, null_encode_and, null_encode_tt, null_encode_activate, null_encode_plus, null_encode_0, null_encode_s, null_plus, null_and ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: and(tt, X) -> activate(X) [1] plus(N, 0) -> N [1] plus(N, s(M)) -> s(plus(N, M)) [1] activate(X) -> X [1] encArg(tt) -> tt [0] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) [0] encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) [0] encArg(cons_activate(x_1)) -> activate(encArg(x_1)) [0] encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) [0] encode_tt -> tt [0] encode_activate(x_1) -> activate(encArg(x_1)) [0] encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encArg(v0) -> null_encArg [0] encode_and(v0, v1) -> null_encode_and [0] encode_tt -> null_encode_tt [0] encode_activate(v0) -> null_encode_activate [0] encode_plus(v0, v1) -> null_encode_plus [0] encode_0 -> null_encode_0 [0] encode_s(v0) -> null_encode_s [0] plus(v0, v1) -> null_plus [0] and(v0, v1) -> null_and [0] The TRS has the following type information: and :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and tt :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and activate :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and plus :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and 0 :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and s :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and encArg :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and cons_and :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and cons_plus :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and cons_activate :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and encode_and :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and encode_tt :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and encode_activate :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and encode_plus :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and encode_0 :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and encode_s :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and null_encArg :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and null_encode_and :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and null_encode_tt :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and null_encode_activate :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and null_encode_plus :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and null_encode_0 :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and null_encode_s :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and null_plus :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and null_and :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: and(tt, X) -> activate(X) [1] plus(N, 0) -> N [1] plus(N, s(M)) -> s(plus(N, M)) [1] activate(X) -> X [1] encArg(tt) -> tt [0] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) [0] encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) [0] encArg(cons_activate(tt)) -> activate(tt) [0] encArg(cons_activate(0)) -> activate(0) [0] encArg(cons_activate(s(x_163))) -> activate(s(encArg(x_163))) [0] encArg(cons_activate(cons_and(x_164, x_231))) -> activate(and(encArg(x_164), encArg(x_231))) [0] encArg(cons_activate(cons_plus(x_165, x_232))) -> activate(plus(encArg(x_165), encArg(x_232))) [0] encArg(cons_activate(cons_activate(x_166))) -> activate(activate(encArg(x_166))) [0] encArg(cons_activate(x_1)) -> activate(null_encArg) [0] encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) [0] encode_tt -> tt [0] encode_activate(tt) -> activate(tt) [0] encode_activate(0) -> activate(0) [0] encode_activate(s(x_199)) -> activate(s(encArg(x_199))) [0] encode_activate(cons_and(x_1100, x_249)) -> activate(and(encArg(x_1100), encArg(x_249))) [0] encode_activate(cons_plus(x_1101, x_250)) -> activate(plus(encArg(x_1101), encArg(x_250))) [0] encode_activate(cons_activate(x_1102)) -> activate(activate(encArg(x_1102))) [0] encode_activate(x_1) -> activate(null_encArg) [0] encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encArg(v0) -> null_encArg [0] encode_and(v0, v1) -> null_encode_and [0] encode_tt -> null_encode_tt [0] encode_activate(v0) -> null_encode_activate [0] encode_plus(v0, v1) -> null_encode_plus [0] encode_0 -> null_encode_0 [0] encode_s(v0) -> null_encode_s [0] plus(v0, v1) -> null_plus [0] and(v0, v1) -> null_and [0] The TRS has the following type information: and :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and tt :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and activate :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and plus :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and 0 :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and s :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and encArg :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and cons_and :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and cons_plus :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and cons_activate :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and encode_and :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and encode_tt :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and encode_activate :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and encode_plus :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and encode_0 :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and encode_s :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and -> tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and null_encArg :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and null_encode_and :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and null_encode_tt :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and null_encode_activate :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and null_encode_plus :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and null_encode_0 :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and null_encode_s :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and null_plus :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and null_and :: tt:0:s:cons_and:cons_plus:cons_activate:null_encArg:null_encode_and:null_encode_tt:null_encode_activate:null_encode_plus:null_encode_0:null_encode_s:null_plus:null_and Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: tt => 1 0 => 0 null_encArg => 0 null_encode_and => 0 null_encode_tt => 0 null_encode_activate => 0 null_encode_plus => 0 null_encode_0 => 0 null_encode_s => 0 null_plus => 0 null_and => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> X :|: X >= 0, z = X and(z, z') -{ 1 }-> activate(X) :|: z' = X, z = 1, X >= 0 and(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(plus(encArg(x_165), encArg(x_232))) :|: z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 0 }-> activate(and(encArg(x_164), encArg(x_231))) :|: x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 0 }-> activate(activate(encArg(x_166))) :|: x_166 >= 0, z = 1 + (1 + x_166) encArg(z) -{ 0 }-> activate(1) :|: z = 1 + 1 encArg(z) -{ 0 }-> activate(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> activate(0) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> activate(1 + encArg(x_163)) :|: x_163 >= 0, z = 1 + (1 + x_163) encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 0 }-> activate(plus(encArg(x_1101), encArg(x_250))) :|: x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 0 }-> activate(and(encArg(x_1100), encArg(x_249))) :|: x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> activate(activate(encArg(x_1102))) :|: x_1102 >= 0, z = 1 + x_1102 encode_activate(z) -{ 0 }-> activate(1) :|: z = 1 encode_activate(z) -{ 0 }-> activate(0) :|: z = 0 encode_activate(z) -{ 0 }-> activate(0) :|: x_1 >= 0, z = x_1 encode_activate(z) -{ 0 }-> activate(1 + encArg(x_199)) :|: x_199 >= 0, z = 1 + x_199 encode_activate(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_and(z, z') -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_and(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_plus(z, z') -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_plus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_s(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_s(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> N :|: z = N, z' = 0, N >= 0 plus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 plus(z, z') -{ 1 }-> 1 + plus(N, M) :|: z' = 1 + M, z = N, M >= 0, N >= 0 ---------------------------------------- (15) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: activate(z) -{ 1 }-> X :|: X >= 0, z = X and(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 and(z, z') -{ 1 }-> activate(X) :|: z' = X, z = 1, X >= 0 ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> X :|: X >= 0, z = X and(z, z') -{ 2 }-> X' :|: z' = X, z = 1, X >= 0, X' >= 0, X = X' and(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + x_1, x_1 >= 0, X >= 0, 0 = X encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(plus(encArg(x_165), encArg(x_232))) :|: z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 0 }-> activate(and(encArg(x_164), encArg(x_231))) :|: x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 0 }-> activate(activate(encArg(x_166))) :|: x_166 >= 0, z = 1 + (1 + x_166) encArg(z) -{ 0 }-> activate(1 + encArg(x_163)) :|: x_163 >= 0, z = 1 + (1 + x_163) encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: x_1 >= 0, z = x_1, X >= 0, 0 = X encode_activate(z) -{ 0 }-> activate(plus(encArg(x_1101), encArg(x_250))) :|: x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 0 }-> activate(and(encArg(x_1100), encArg(x_249))) :|: x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> activate(activate(encArg(x_1102))) :|: x_1102 >= 0, z = 1 + x_1102 encode_activate(z) -{ 0 }-> activate(1 + encArg(x_199)) :|: x_199 >= 0, z = 1 + x_199 encode_activate(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_and(z, z') -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_and(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_plus(z, z') -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_plus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_s(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_s(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> N :|: z = N, z' = 0, N >= 0 plus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 plus(z, z') -{ 1 }-> 1 + plus(N, M) :|: z' = 1 + M, z = N, M >= 0, N >= 0 ---------------------------------------- (17) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(plus(encArg(x_165), encArg(x_232))) :|: z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 0 }-> activate(and(encArg(x_164), encArg(x_231))) :|: x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> activate(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 0 }-> activate(plus(encArg(x_1101), encArg(x_250))) :|: x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 0 }-> activate(and(encArg(x_1100), encArg(x_249))) :|: x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> activate(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 ---------------------------------------- (19) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { encode_0 } { activate } { and } { encode_tt } { plus } { encArg } { encode_and } { encode_activate } { encode_plus } { encode_s } ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(plus(encArg(x_165), encArg(x_232))) :|: z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 0 }-> activate(and(encArg(x_164), encArg(x_231))) :|: x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> activate(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 0 }-> activate(plus(encArg(x_1101), encArg(x_250))) :|: x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 0 }-> activate(and(encArg(x_1100), encArg(x_249))) :|: x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> activate(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_0}, {activate}, {and}, {encode_tt}, {plus}, {encArg}, {encode_and}, {encode_activate}, {encode_plus}, {encode_s} ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(plus(encArg(x_165), encArg(x_232))) :|: z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 0 }-> activate(and(encArg(x_164), encArg(x_231))) :|: x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> activate(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 0 }-> activate(plus(encArg(x_1101), encArg(x_250))) :|: x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 0 }-> activate(and(encArg(x_1100), encArg(x_249))) :|: x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> activate(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_0}, {activate}, {and}, {encode_tt}, {plus}, {encArg}, {encode_and}, {encode_activate}, {encode_plus}, {encode_s} ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(plus(encArg(x_165), encArg(x_232))) :|: z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 0 }-> activate(and(encArg(x_164), encArg(x_231))) :|: x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> activate(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 0 }-> activate(plus(encArg(x_1101), encArg(x_250))) :|: x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 0 }-> activate(and(encArg(x_1100), encArg(x_249))) :|: x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> activate(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_0}, {activate}, {and}, {encode_tt}, {plus}, {encArg}, {encode_and}, {encode_activate}, {encode_plus}, {encode_s} Previous analysis results are: encode_0: runtime: ?, size: O(1) [0] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(plus(encArg(x_165), encArg(x_232))) :|: z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 0 }-> activate(and(encArg(x_164), encArg(x_231))) :|: x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> activate(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 0 }-> activate(plus(encArg(x_1101), encArg(x_250))) :|: x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 0 }-> activate(and(encArg(x_1100), encArg(x_249))) :|: x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> activate(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {activate}, {and}, {encode_tt}, {plus}, {encArg}, {encode_and}, {encode_activate}, {encode_plus}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(plus(encArg(x_165), encArg(x_232))) :|: z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 0 }-> activate(and(encArg(x_164), encArg(x_231))) :|: x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> activate(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 0 }-> activate(plus(encArg(x_1101), encArg(x_250))) :|: x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 0 }-> activate(and(encArg(x_1100), encArg(x_249))) :|: x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> activate(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {activate}, {and}, {encode_tt}, {plus}, {encArg}, {encode_and}, {encode_activate}, {encode_plus}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: activate after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(plus(encArg(x_165), encArg(x_232))) :|: z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 0 }-> activate(and(encArg(x_164), encArg(x_231))) :|: x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> activate(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 0 }-> activate(plus(encArg(x_1101), encArg(x_250))) :|: x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 0 }-> activate(and(encArg(x_1100), encArg(x_249))) :|: x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> activate(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {activate}, {and}, {encode_tt}, {plus}, {encArg}, {encode_and}, {encode_activate}, {encode_plus}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: ?, size: O(n^1) [z] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: activate after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(plus(encArg(x_165), encArg(x_232))) :|: z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 0 }-> activate(and(encArg(x_164), encArg(x_231))) :|: x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> activate(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 0 }-> activate(plus(encArg(x_1101), encArg(x_250))) :|: x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 0 }-> activate(and(encArg(x_1100), encArg(x_249))) :|: x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> activate(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {and}, {encode_tt}, {plus}, {encArg}, {encode_and}, {encode_activate}, {encode_plus}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (33) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(plus(encArg(x_165), encArg(x_232))) :|: z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 0 }-> activate(and(encArg(x_164), encArg(x_231))) :|: x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> activate(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 0 }-> activate(plus(encArg(x_1101), encArg(x_250))) :|: x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 0 }-> activate(and(encArg(x_1100), encArg(x_249))) :|: x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> activate(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {and}, {encode_tt}, {plus}, {encArg}, {encode_and}, {encode_activate}, {encode_plus}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: and after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(plus(encArg(x_165), encArg(x_232))) :|: z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 0 }-> activate(and(encArg(x_164), encArg(x_231))) :|: x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> activate(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 0 }-> activate(plus(encArg(x_1101), encArg(x_250))) :|: x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 0 }-> activate(and(encArg(x_1100), encArg(x_249))) :|: x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> activate(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {and}, {encode_tt}, {plus}, {encArg}, {encode_and}, {encode_activate}, {encode_plus}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: O(1) [1], size: O(n^1) [z] and: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: and after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(plus(encArg(x_165), encArg(x_232))) :|: z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 0 }-> activate(and(encArg(x_164), encArg(x_231))) :|: x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> activate(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 0 }-> activate(plus(encArg(x_1101), encArg(x_250))) :|: x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 0 }-> activate(and(encArg(x_1100), encArg(x_249))) :|: x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> activate(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_tt}, {plus}, {encArg}, {encode_and}, {encode_activate}, {encode_plus}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: O(1) [1], size: O(n^1) [z] and: runtime: O(1) [2], size: O(n^1) [z'] ---------------------------------------- (39) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(plus(encArg(x_165), encArg(x_232))) :|: z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 0 }-> activate(and(encArg(x_164), encArg(x_231))) :|: x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> activate(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 0 }-> activate(plus(encArg(x_1101), encArg(x_250))) :|: x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 0 }-> activate(and(encArg(x_1100), encArg(x_249))) :|: x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> activate(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_tt}, {plus}, {encArg}, {encode_and}, {encode_activate}, {encode_plus}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: O(1) [1], size: O(n^1) [z] and: runtime: O(1) [2], size: O(n^1) [z'] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_tt after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(plus(encArg(x_165), encArg(x_232))) :|: z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 0 }-> activate(and(encArg(x_164), encArg(x_231))) :|: x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> activate(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 0 }-> activate(plus(encArg(x_1101), encArg(x_250))) :|: x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 0 }-> activate(and(encArg(x_1100), encArg(x_249))) :|: x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> activate(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_tt}, {plus}, {encArg}, {encode_and}, {encode_activate}, {encode_plus}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: O(1) [1], size: O(n^1) [z] and: runtime: O(1) [2], size: O(n^1) [z'] encode_tt: runtime: ?, size: O(1) [1] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_tt after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(plus(encArg(x_165), encArg(x_232))) :|: z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 0 }-> activate(and(encArg(x_164), encArg(x_231))) :|: x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> activate(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 0 }-> activate(plus(encArg(x_1101), encArg(x_250))) :|: x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 0 }-> activate(and(encArg(x_1100), encArg(x_249))) :|: x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> activate(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {plus}, {encArg}, {encode_and}, {encode_activate}, {encode_plus}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: O(1) [1], size: O(n^1) [z] and: runtime: O(1) [2], size: O(n^1) [z'] encode_tt: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (45) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(plus(encArg(x_165), encArg(x_232))) :|: z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 0 }-> activate(and(encArg(x_164), encArg(x_231))) :|: x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> activate(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 0 }-> activate(plus(encArg(x_1101), encArg(x_250))) :|: x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 0 }-> activate(and(encArg(x_1100), encArg(x_249))) :|: x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> activate(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {plus}, {encArg}, {encode_and}, {encode_activate}, {encode_plus}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: O(1) [1], size: O(n^1) [z] and: runtime: O(1) [2], size: O(n^1) [z'] encode_tt: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(plus(encArg(x_165), encArg(x_232))) :|: z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 0 }-> activate(and(encArg(x_164), encArg(x_231))) :|: x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> activate(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 0 }-> activate(plus(encArg(x_1101), encArg(x_250))) :|: x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 0 }-> activate(and(encArg(x_1100), encArg(x_249))) :|: x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> activate(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {plus}, {encArg}, {encode_and}, {encode_activate}, {encode_plus}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: O(1) [1], size: O(n^1) [z] and: runtime: O(1) [2], size: O(n^1) [z'] encode_tt: runtime: O(1) [0], size: O(1) [1] plus: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(plus(encArg(x_165), encArg(x_232))) :|: z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 0 }-> activate(and(encArg(x_164), encArg(x_231))) :|: x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> activate(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 0 }-> activate(plus(encArg(x_1101), encArg(x_250))) :|: x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 0 }-> activate(and(encArg(x_1100), encArg(x_249))) :|: x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> activate(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encArg}, {encode_and}, {encode_activate}, {encode_plus}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: O(1) [1], size: O(n^1) [z] and: runtime: O(1) [2], size: O(n^1) [z'] encode_tt: runtime: O(1) [0], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] ---------------------------------------- (51) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(plus(encArg(x_165), encArg(x_232))) :|: z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 0 }-> activate(and(encArg(x_164), encArg(x_231))) :|: x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> activate(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 0 }-> activate(plus(encArg(x_1101), encArg(x_250))) :|: x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 0 }-> activate(and(encArg(x_1100), encArg(x_249))) :|: x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> activate(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encArg}, {encode_and}, {encode_activate}, {encode_plus}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: O(1) [1], size: O(n^1) [z] and: runtime: O(1) [2], size: O(n^1) [z'] encode_tt: runtime: O(1) [0], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] ---------------------------------------- (53) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 5 + 3*z ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(plus(encArg(x_165), encArg(x_232))) :|: z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 0 }-> activate(and(encArg(x_164), encArg(x_231))) :|: x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> activate(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 0 }-> activate(plus(encArg(x_1101), encArg(x_250))) :|: x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 0 }-> activate(and(encArg(x_1100), encArg(x_249))) :|: x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> activate(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encArg}, {encode_and}, {encode_activate}, {encode_plus}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: O(1) [1], size: O(n^1) [z] and: runtime: O(1) [2], size: O(n^1) [z'] encode_tt: runtime: O(1) [0], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] encArg: runtime: ?, size: O(n^1) [5 + 3*z] ---------------------------------------- (55) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + 3*z + 3*z^2 ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(plus(encArg(x_165), encArg(x_232))) :|: z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 0 }-> activate(and(encArg(x_164), encArg(x_231))) :|: x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> activate(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 0 }-> activate(plus(encArg(x_1101), encArg(x_250))) :|: x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 0 }-> activate(and(encArg(x_1100), encArg(x_249))) :|: x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> activate(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 0 }-> and(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_and}, {encode_activate}, {encode_plus}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: O(1) [1], size: O(n^1) [z] and: runtime: O(1) [2], size: O(n^1) [z'] encode_tt: runtime: O(1) [0], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [1 + 3*z + 3*z^2], size: O(n^1) [5 + 3*z] ---------------------------------------- (57) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 4 + s10 + 3*x_165 + 3*x_165^2 + 3*x_232 + 3*x_232^2 }-> s12 :|: s9 >= 0, s9 <= 3 * x_165 + 5, s10 >= 0, s10 <= 3 * x_232 + 5, s11 >= 0, s11 <= s9 + s10, s12 >= 0, s12 <= s11, z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 9 + -9*z + 3*z^2 }-> s15 :|: s13 >= 0, s13 <= 3 * (z - 2) + 5, s14 >= 0, s14 <= s13, s15 >= 0, s15 <= s14, z - 2 >= 0 encArg(z) -{ 3 + s1 + 3*x_1 + 3*x_1^2 + 3*x_2 + 3*x_2^2 }-> s2 :|: s'' >= 0, s'' <= 3 * x_1 + 5, s1 >= 0, s1 <= 3 * x_2 + 5, s2 >= 0, s2 <= s'' + s1, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 4 + 3*x_1 + 3*x_1^2 + 3*x_2 + 3*x_2^2 }-> s27 :|: s25 >= 0, s25 <= 3 * x_1 + 5, s26 >= 0, s26 <= 3 * x_2 + 5, s27 >= 0, s27 <= s26, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 5 + 3*x_164 + 3*x_164^2 + 3*x_231 + 3*x_231^2 }-> s34 :|: s31 >= 0, s31 <= 3 * x_164 + 5, s32 >= 0, s32 <= 3 * x_231 + 5, s33 >= 0, s33 <= s32, s34 >= 0, s34 <= s33, x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 8 + -9*z + 3*z^2 }-> s8 :|: s7 >= 0, s7 <= 3 * (z - 2) + 5, s8 >= 0, s8 <= 1 + s7, z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 + -3*z + 3*z^2 }-> 1 + s' :|: s' >= 0, s' <= 3 * (z - 1) + 5, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 + -3*z + 3*z^2 }-> s17 :|: s16 >= 0, s16 <= 3 * (z - 1) + 5, s17 >= 0, s17 <= 1 + s16, z - 1 >= 0 encode_activate(z) -{ 4 + s19 + 3*x_1101 + 3*x_1101^2 + 3*x_250 + 3*x_250^2 }-> s21 :|: s18 >= 0, s18 <= 3 * x_1101 + 5, s19 >= 0, s19 <= 3 * x_250 + 5, s20 >= 0, s20 <= s18 + s19, s21 >= 0, s21 <= s20, x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 3 + -3*z + 3*z^2 }-> s24 :|: s22 >= 0, s22 <= 3 * (z - 1) + 5, s23 >= 0, s23 <= s22, s24 >= 0, s24 <= s23, z - 1 >= 0 encode_activate(z) -{ 5 + 3*x_1100 + 3*x_1100^2 + 3*x_249 + 3*x_249^2 }-> s38 :|: s35 >= 0, s35 <= 3 * x_1100 + 5, s36 >= 0, s36 <= 3 * x_249 + 5, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37, x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 4 + 3*z + 3*z^2 + 3*z' + 3*z'^2 }-> s30 :|: s28 >= 0, s28 <= 3 * z + 5, s29 >= 0, s29 <= 3 * z' + 5, s30 >= 0, s30 <= s29, z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 3 + s4 + 3*z + 3*z^2 + 3*z' + 3*z'^2 }-> s5 :|: s3 >= 0, s3 <= 3 * z + 5, s4 >= 0, s4 <= 3 * z' + 5, s5 >= 0, s5 <= s3 + s4, z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 1 + 3*z + 3*z^2 }-> 1 + s6 :|: s6 >= 0, s6 <= 3 * z + 5, z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_and}, {encode_activate}, {encode_plus}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: O(1) [1], size: O(n^1) [z] and: runtime: O(1) [2], size: O(n^1) [z'] encode_tt: runtime: O(1) [0], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [1 + 3*z + 3*z^2], size: O(n^1) [5 + 3*z] ---------------------------------------- (59) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_and after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 5 + 3*z' ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 4 + s10 + 3*x_165 + 3*x_165^2 + 3*x_232 + 3*x_232^2 }-> s12 :|: s9 >= 0, s9 <= 3 * x_165 + 5, s10 >= 0, s10 <= 3 * x_232 + 5, s11 >= 0, s11 <= s9 + s10, s12 >= 0, s12 <= s11, z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 9 + -9*z + 3*z^2 }-> s15 :|: s13 >= 0, s13 <= 3 * (z - 2) + 5, s14 >= 0, s14 <= s13, s15 >= 0, s15 <= s14, z - 2 >= 0 encArg(z) -{ 3 + s1 + 3*x_1 + 3*x_1^2 + 3*x_2 + 3*x_2^2 }-> s2 :|: s'' >= 0, s'' <= 3 * x_1 + 5, s1 >= 0, s1 <= 3 * x_2 + 5, s2 >= 0, s2 <= s'' + s1, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 4 + 3*x_1 + 3*x_1^2 + 3*x_2 + 3*x_2^2 }-> s27 :|: s25 >= 0, s25 <= 3 * x_1 + 5, s26 >= 0, s26 <= 3 * x_2 + 5, s27 >= 0, s27 <= s26, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 5 + 3*x_164 + 3*x_164^2 + 3*x_231 + 3*x_231^2 }-> s34 :|: s31 >= 0, s31 <= 3 * x_164 + 5, s32 >= 0, s32 <= 3 * x_231 + 5, s33 >= 0, s33 <= s32, s34 >= 0, s34 <= s33, x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 8 + -9*z + 3*z^2 }-> s8 :|: s7 >= 0, s7 <= 3 * (z - 2) + 5, s8 >= 0, s8 <= 1 + s7, z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 + -3*z + 3*z^2 }-> 1 + s' :|: s' >= 0, s' <= 3 * (z - 1) + 5, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 + -3*z + 3*z^2 }-> s17 :|: s16 >= 0, s16 <= 3 * (z - 1) + 5, s17 >= 0, s17 <= 1 + s16, z - 1 >= 0 encode_activate(z) -{ 4 + s19 + 3*x_1101 + 3*x_1101^2 + 3*x_250 + 3*x_250^2 }-> s21 :|: s18 >= 0, s18 <= 3 * x_1101 + 5, s19 >= 0, s19 <= 3 * x_250 + 5, s20 >= 0, s20 <= s18 + s19, s21 >= 0, s21 <= s20, x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 3 + -3*z + 3*z^2 }-> s24 :|: s22 >= 0, s22 <= 3 * (z - 1) + 5, s23 >= 0, s23 <= s22, s24 >= 0, s24 <= s23, z - 1 >= 0 encode_activate(z) -{ 5 + 3*x_1100 + 3*x_1100^2 + 3*x_249 + 3*x_249^2 }-> s38 :|: s35 >= 0, s35 <= 3 * x_1100 + 5, s36 >= 0, s36 <= 3 * x_249 + 5, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37, x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 4 + 3*z + 3*z^2 + 3*z' + 3*z'^2 }-> s30 :|: s28 >= 0, s28 <= 3 * z + 5, s29 >= 0, s29 <= 3 * z' + 5, s30 >= 0, s30 <= s29, z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 3 + s4 + 3*z + 3*z^2 + 3*z' + 3*z'^2 }-> s5 :|: s3 >= 0, s3 <= 3 * z + 5, s4 >= 0, s4 <= 3 * z' + 5, s5 >= 0, s5 <= s3 + s4, z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 1 + 3*z + 3*z^2 }-> 1 + s6 :|: s6 >= 0, s6 <= 3 * z + 5, z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_and}, {encode_activate}, {encode_plus}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: O(1) [1], size: O(n^1) [z] and: runtime: O(1) [2], size: O(n^1) [z'] encode_tt: runtime: O(1) [0], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [1 + 3*z + 3*z^2], size: O(n^1) [5 + 3*z] encode_and: runtime: ?, size: O(n^1) [5 + 3*z'] ---------------------------------------- (61) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_and after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 4 + 3*z + 3*z^2 + 3*z' + 3*z'^2 ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 4 + s10 + 3*x_165 + 3*x_165^2 + 3*x_232 + 3*x_232^2 }-> s12 :|: s9 >= 0, s9 <= 3 * x_165 + 5, s10 >= 0, s10 <= 3 * x_232 + 5, s11 >= 0, s11 <= s9 + s10, s12 >= 0, s12 <= s11, z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 9 + -9*z + 3*z^2 }-> s15 :|: s13 >= 0, s13 <= 3 * (z - 2) + 5, s14 >= 0, s14 <= s13, s15 >= 0, s15 <= s14, z - 2 >= 0 encArg(z) -{ 3 + s1 + 3*x_1 + 3*x_1^2 + 3*x_2 + 3*x_2^2 }-> s2 :|: s'' >= 0, s'' <= 3 * x_1 + 5, s1 >= 0, s1 <= 3 * x_2 + 5, s2 >= 0, s2 <= s'' + s1, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 4 + 3*x_1 + 3*x_1^2 + 3*x_2 + 3*x_2^2 }-> s27 :|: s25 >= 0, s25 <= 3 * x_1 + 5, s26 >= 0, s26 <= 3 * x_2 + 5, s27 >= 0, s27 <= s26, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 5 + 3*x_164 + 3*x_164^2 + 3*x_231 + 3*x_231^2 }-> s34 :|: s31 >= 0, s31 <= 3 * x_164 + 5, s32 >= 0, s32 <= 3 * x_231 + 5, s33 >= 0, s33 <= s32, s34 >= 0, s34 <= s33, x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 8 + -9*z + 3*z^2 }-> s8 :|: s7 >= 0, s7 <= 3 * (z - 2) + 5, s8 >= 0, s8 <= 1 + s7, z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 + -3*z + 3*z^2 }-> 1 + s' :|: s' >= 0, s' <= 3 * (z - 1) + 5, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 + -3*z + 3*z^2 }-> s17 :|: s16 >= 0, s16 <= 3 * (z - 1) + 5, s17 >= 0, s17 <= 1 + s16, z - 1 >= 0 encode_activate(z) -{ 4 + s19 + 3*x_1101 + 3*x_1101^2 + 3*x_250 + 3*x_250^2 }-> s21 :|: s18 >= 0, s18 <= 3 * x_1101 + 5, s19 >= 0, s19 <= 3 * x_250 + 5, s20 >= 0, s20 <= s18 + s19, s21 >= 0, s21 <= s20, x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 3 + -3*z + 3*z^2 }-> s24 :|: s22 >= 0, s22 <= 3 * (z - 1) + 5, s23 >= 0, s23 <= s22, s24 >= 0, s24 <= s23, z - 1 >= 0 encode_activate(z) -{ 5 + 3*x_1100 + 3*x_1100^2 + 3*x_249 + 3*x_249^2 }-> s38 :|: s35 >= 0, s35 <= 3 * x_1100 + 5, s36 >= 0, s36 <= 3 * x_249 + 5, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37, x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 4 + 3*z + 3*z^2 + 3*z' + 3*z'^2 }-> s30 :|: s28 >= 0, s28 <= 3 * z + 5, s29 >= 0, s29 <= 3 * z' + 5, s30 >= 0, s30 <= s29, z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 3 + s4 + 3*z + 3*z^2 + 3*z' + 3*z'^2 }-> s5 :|: s3 >= 0, s3 <= 3 * z + 5, s4 >= 0, s4 <= 3 * z' + 5, s5 >= 0, s5 <= s3 + s4, z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 1 + 3*z + 3*z^2 }-> 1 + s6 :|: s6 >= 0, s6 <= 3 * z + 5, z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_activate}, {encode_plus}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: O(1) [1], size: O(n^1) [z] and: runtime: O(1) [2], size: O(n^1) [z'] encode_tt: runtime: O(1) [0], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [1 + 3*z + 3*z^2], size: O(n^1) [5 + 3*z] encode_and: runtime: O(n^2) [4 + 3*z + 3*z^2 + 3*z' + 3*z'^2], size: O(n^1) [5 + 3*z'] ---------------------------------------- (63) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 4 + s10 + 3*x_165 + 3*x_165^2 + 3*x_232 + 3*x_232^2 }-> s12 :|: s9 >= 0, s9 <= 3 * x_165 + 5, s10 >= 0, s10 <= 3 * x_232 + 5, s11 >= 0, s11 <= s9 + s10, s12 >= 0, s12 <= s11, z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 9 + -9*z + 3*z^2 }-> s15 :|: s13 >= 0, s13 <= 3 * (z - 2) + 5, s14 >= 0, s14 <= s13, s15 >= 0, s15 <= s14, z - 2 >= 0 encArg(z) -{ 3 + s1 + 3*x_1 + 3*x_1^2 + 3*x_2 + 3*x_2^2 }-> s2 :|: s'' >= 0, s'' <= 3 * x_1 + 5, s1 >= 0, s1 <= 3 * x_2 + 5, s2 >= 0, s2 <= s'' + s1, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 4 + 3*x_1 + 3*x_1^2 + 3*x_2 + 3*x_2^2 }-> s27 :|: s25 >= 0, s25 <= 3 * x_1 + 5, s26 >= 0, s26 <= 3 * x_2 + 5, s27 >= 0, s27 <= s26, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 5 + 3*x_164 + 3*x_164^2 + 3*x_231 + 3*x_231^2 }-> s34 :|: s31 >= 0, s31 <= 3 * x_164 + 5, s32 >= 0, s32 <= 3 * x_231 + 5, s33 >= 0, s33 <= s32, s34 >= 0, s34 <= s33, x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 8 + -9*z + 3*z^2 }-> s8 :|: s7 >= 0, s7 <= 3 * (z - 2) + 5, s8 >= 0, s8 <= 1 + s7, z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 + -3*z + 3*z^2 }-> 1 + s' :|: s' >= 0, s' <= 3 * (z - 1) + 5, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 + -3*z + 3*z^2 }-> s17 :|: s16 >= 0, s16 <= 3 * (z - 1) + 5, s17 >= 0, s17 <= 1 + s16, z - 1 >= 0 encode_activate(z) -{ 4 + s19 + 3*x_1101 + 3*x_1101^2 + 3*x_250 + 3*x_250^2 }-> s21 :|: s18 >= 0, s18 <= 3 * x_1101 + 5, s19 >= 0, s19 <= 3 * x_250 + 5, s20 >= 0, s20 <= s18 + s19, s21 >= 0, s21 <= s20, x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 3 + -3*z + 3*z^2 }-> s24 :|: s22 >= 0, s22 <= 3 * (z - 1) + 5, s23 >= 0, s23 <= s22, s24 >= 0, s24 <= s23, z - 1 >= 0 encode_activate(z) -{ 5 + 3*x_1100 + 3*x_1100^2 + 3*x_249 + 3*x_249^2 }-> s38 :|: s35 >= 0, s35 <= 3 * x_1100 + 5, s36 >= 0, s36 <= 3 * x_249 + 5, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37, x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 4 + 3*z + 3*z^2 + 3*z' + 3*z'^2 }-> s30 :|: s28 >= 0, s28 <= 3 * z + 5, s29 >= 0, s29 <= 3 * z' + 5, s30 >= 0, s30 <= s29, z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 3 + s4 + 3*z + 3*z^2 + 3*z' + 3*z'^2 }-> s5 :|: s3 >= 0, s3 <= 3 * z + 5, s4 >= 0, s4 <= 3 * z' + 5, s5 >= 0, s5 <= s3 + s4, z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 1 + 3*z + 3*z^2 }-> 1 + s6 :|: s6 >= 0, s6 <= 3 * z + 5, z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_activate}, {encode_plus}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: O(1) [1], size: O(n^1) [z] and: runtime: O(1) [2], size: O(n^1) [z'] encode_tt: runtime: O(1) [0], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [1 + 3*z + 3*z^2], size: O(n^1) [5 + 3*z] encode_and: runtime: O(n^2) [4 + 3*z + 3*z^2 + 3*z' + 3*z'^2], size: O(n^1) [5 + 3*z'] ---------------------------------------- (65) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_activate after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 7 + 3*z ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 4 + s10 + 3*x_165 + 3*x_165^2 + 3*x_232 + 3*x_232^2 }-> s12 :|: s9 >= 0, s9 <= 3 * x_165 + 5, s10 >= 0, s10 <= 3 * x_232 + 5, s11 >= 0, s11 <= s9 + s10, s12 >= 0, s12 <= s11, z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 9 + -9*z + 3*z^2 }-> s15 :|: s13 >= 0, s13 <= 3 * (z - 2) + 5, s14 >= 0, s14 <= s13, s15 >= 0, s15 <= s14, z - 2 >= 0 encArg(z) -{ 3 + s1 + 3*x_1 + 3*x_1^2 + 3*x_2 + 3*x_2^2 }-> s2 :|: s'' >= 0, s'' <= 3 * x_1 + 5, s1 >= 0, s1 <= 3 * x_2 + 5, s2 >= 0, s2 <= s'' + s1, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 4 + 3*x_1 + 3*x_1^2 + 3*x_2 + 3*x_2^2 }-> s27 :|: s25 >= 0, s25 <= 3 * x_1 + 5, s26 >= 0, s26 <= 3 * x_2 + 5, s27 >= 0, s27 <= s26, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 5 + 3*x_164 + 3*x_164^2 + 3*x_231 + 3*x_231^2 }-> s34 :|: s31 >= 0, s31 <= 3 * x_164 + 5, s32 >= 0, s32 <= 3 * x_231 + 5, s33 >= 0, s33 <= s32, s34 >= 0, s34 <= s33, x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 8 + -9*z + 3*z^2 }-> s8 :|: s7 >= 0, s7 <= 3 * (z - 2) + 5, s8 >= 0, s8 <= 1 + s7, z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 + -3*z + 3*z^2 }-> 1 + s' :|: s' >= 0, s' <= 3 * (z - 1) + 5, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 + -3*z + 3*z^2 }-> s17 :|: s16 >= 0, s16 <= 3 * (z - 1) + 5, s17 >= 0, s17 <= 1 + s16, z - 1 >= 0 encode_activate(z) -{ 4 + s19 + 3*x_1101 + 3*x_1101^2 + 3*x_250 + 3*x_250^2 }-> s21 :|: s18 >= 0, s18 <= 3 * x_1101 + 5, s19 >= 0, s19 <= 3 * x_250 + 5, s20 >= 0, s20 <= s18 + s19, s21 >= 0, s21 <= s20, x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 3 + -3*z + 3*z^2 }-> s24 :|: s22 >= 0, s22 <= 3 * (z - 1) + 5, s23 >= 0, s23 <= s22, s24 >= 0, s24 <= s23, z - 1 >= 0 encode_activate(z) -{ 5 + 3*x_1100 + 3*x_1100^2 + 3*x_249 + 3*x_249^2 }-> s38 :|: s35 >= 0, s35 <= 3 * x_1100 + 5, s36 >= 0, s36 <= 3 * x_249 + 5, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37, x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 4 + 3*z + 3*z^2 + 3*z' + 3*z'^2 }-> s30 :|: s28 >= 0, s28 <= 3 * z + 5, s29 >= 0, s29 <= 3 * z' + 5, s30 >= 0, s30 <= s29, z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 3 + s4 + 3*z + 3*z^2 + 3*z' + 3*z'^2 }-> s5 :|: s3 >= 0, s3 <= 3 * z + 5, s4 >= 0, s4 <= 3 * z' + 5, s5 >= 0, s5 <= s3 + s4, z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 1 + 3*z + 3*z^2 }-> 1 + s6 :|: s6 >= 0, s6 <= 3 * z + 5, z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_activate}, {encode_plus}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: O(1) [1], size: O(n^1) [z] and: runtime: O(1) [2], size: O(n^1) [z'] encode_tt: runtime: O(1) [0], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [1 + 3*z + 3*z^2], size: O(n^1) [5 + 3*z] encode_and: runtime: O(n^2) [4 + 3*z + 3*z^2 + 3*z' + 3*z'^2], size: O(n^1) [5 + 3*z'] encode_activate: runtime: ?, size: O(n^1) [7 + 3*z] ---------------------------------------- (67) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_activate after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 22 + 15*z + 18*z^2 ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 4 + s10 + 3*x_165 + 3*x_165^2 + 3*x_232 + 3*x_232^2 }-> s12 :|: s9 >= 0, s9 <= 3 * x_165 + 5, s10 >= 0, s10 <= 3 * x_232 + 5, s11 >= 0, s11 <= s9 + s10, s12 >= 0, s12 <= s11, z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 9 + -9*z + 3*z^2 }-> s15 :|: s13 >= 0, s13 <= 3 * (z - 2) + 5, s14 >= 0, s14 <= s13, s15 >= 0, s15 <= s14, z - 2 >= 0 encArg(z) -{ 3 + s1 + 3*x_1 + 3*x_1^2 + 3*x_2 + 3*x_2^2 }-> s2 :|: s'' >= 0, s'' <= 3 * x_1 + 5, s1 >= 0, s1 <= 3 * x_2 + 5, s2 >= 0, s2 <= s'' + s1, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 4 + 3*x_1 + 3*x_1^2 + 3*x_2 + 3*x_2^2 }-> s27 :|: s25 >= 0, s25 <= 3 * x_1 + 5, s26 >= 0, s26 <= 3 * x_2 + 5, s27 >= 0, s27 <= s26, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 5 + 3*x_164 + 3*x_164^2 + 3*x_231 + 3*x_231^2 }-> s34 :|: s31 >= 0, s31 <= 3 * x_164 + 5, s32 >= 0, s32 <= 3 * x_231 + 5, s33 >= 0, s33 <= s32, s34 >= 0, s34 <= s33, x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 8 + -9*z + 3*z^2 }-> s8 :|: s7 >= 0, s7 <= 3 * (z - 2) + 5, s8 >= 0, s8 <= 1 + s7, z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 + -3*z + 3*z^2 }-> 1 + s' :|: s' >= 0, s' <= 3 * (z - 1) + 5, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 + -3*z + 3*z^2 }-> s17 :|: s16 >= 0, s16 <= 3 * (z - 1) + 5, s17 >= 0, s17 <= 1 + s16, z - 1 >= 0 encode_activate(z) -{ 4 + s19 + 3*x_1101 + 3*x_1101^2 + 3*x_250 + 3*x_250^2 }-> s21 :|: s18 >= 0, s18 <= 3 * x_1101 + 5, s19 >= 0, s19 <= 3 * x_250 + 5, s20 >= 0, s20 <= s18 + s19, s21 >= 0, s21 <= s20, x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 3 + -3*z + 3*z^2 }-> s24 :|: s22 >= 0, s22 <= 3 * (z - 1) + 5, s23 >= 0, s23 <= s22, s24 >= 0, s24 <= s23, z - 1 >= 0 encode_activate(z) -{ 5 + 3*x_1100 + 3*x_1100^2 + 3*x_249 + 3*x_249^2 }-> s38 :|: s35 >= 0, s35 <= 3 * x_1100 + 5, s36 >= 0, s36 <= 3 * x_249 + 5, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37, x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 4 + 3*z + 3*z^2 + 3*z' + 3*z'^2 }-> s30 :|: s28 >= 0, s28 <= 3 * z + 5, s29 >= 0, s29 <= 3 * z' + 5, s30 >= 0, s30 <= s29, z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 3 + s4 + 3*z + 3*z^2 + 3*z' + 3*z'^2 }-> s5 :|: s3 >= 0, s3 <= 3 * z + 5, s4 >= 0, s4 <= 3 * z' + 5, s5 >= 0, s5 <= s3 + s4, z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 1 + 3*z + 3*z^2 }-> 1 + s6 :|: s6 >= 0, s6 <= 3 * z + 5, z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_plus}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: O(1) [1], size: O(n^1) [z] and: runtime: O(1) [2], size: O(n^1) [z'] encode_tt: runtime: O(1) [0], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [1 + 3*z + 3*z^2], size: O(n^1) [5 + 3*z] encode_and: runtime: O(n^2) [4 + 3*z + 3*z^2 + 3*z' + 3*z'^2], size: O(n^1) [5 + 3*z'] encode_activate: runtime: O(n^2) [22 + 15*z + 18*z^2], size: O(n^1) [7 + 3*z] ---------------------------------------- (69) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (70) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 4 + s10 + 3*x_165 + 3*x_165^2 + 3*x_232 + 3*x_232^2 }-> s12 :|: s9 >= 0, s9 <= 3 * x_165 + 5, s10 >= 0, s10 <= 3 * x_232 + 5, s11 >= 0, s11 <= s9 + s10, s12 >= 0, s12 <= s11, z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 9 + -9*z + 3*z^2 }-> s15 :|: s13 >= 0, s13 <= 3 * (z - 2) + 5, s14 >= 0, s14 <= s13, s15 >= 0, s15 <= s14, z - 2 >= 0 encArg(z) -{ 3 + s1 + 3*x_1 + 3*x_1^2 + 3*x_2 + 3*x_2^2 }-> s2 :|: s'' >= 0, s'' <= 3 * x_1 + 5, s1 >= 0, s1 <= 3 * x_2 + 5, s2 >= 0, s2 <= s'' + s1, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 4 + 3*x_1 + 3*x_1^2 + 3*x_2 + 3*x_2^2 }-> s27 :|: s25 >= 0, s25 <= 3 * x_1 + 5, s26 >= 0, s26 <= 3 * x_2 + 5, s27 >= 0, s27 <= s26, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 5 + 3*x_164 + 3*x_164^2 + 3*x_231 + 3*x_231^2 }-> s34 :|: s31 >= 0, s31 <= 3 * x_164 + 5, s32 >= 0, s32 <= 3 * x_231 + 5, s33 >= 0, s33 <= s32, s34 >= 0, s34 <= s33, x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 8 + -9*z + 3*z^2 }-> s8 :|: s7 >= 0, s7 <= 3 * (z - 2) + 5, s8 >= 0, s8 <= 1 + s7, z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 + -3*z + 3*z^2 }-> 1 + s' :|: s' >= 0, s' <= 3 * (z - 1) + 5, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 + -3*z + 3*z^2 }-> s17 :|: s16 >= 0, s16 <= 3 * (z - 1) + 5, s17 >= 0, s17 <= 1 + s16, z - 1 >= 0 encode_activate(z) -{ 4 + s19 + 3*x_1101 + 3*x_1101^2 + 3*x_250 + 3*x_250^2 }-> s21 :|: s18 >= 0, s18 <= 3 * x_1101 + 5, s19 >= 0, s19 <= 3 * x_250 + 5, s20 >= 0, s20 <= s18 + s19, s21 >= 0, s21 <= s20, x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 3 + -3*z + 3*z^2 }-> s24 :|: s22 >= 0, s22 <= 3 * (z - 1) + 5, s23 >= 0, s23 <= s22, s24 >= 0, s24 <= s23, z - 1 >= 0 encode_activate(z) -{ 5 + 3*x_1100 + 3*x_1100^2 + 3*x_249 + 3*x_249^2 }-> s38 :|: s35 >= 0, s35 <= 3 * x_1100 + 5, s36 >= 0, s36 <= 3 * x_249 + 5, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37, x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 4 + 3*z + 3*z^2 + 3*z' + 3*z'^2 }-> s30 :|: s28 >= 0, s28 <= 3 * z + 5, s29 >= 0, s29 <= 3 * z' + 5, s30 >= 0, s30 <= s29, z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 3 + s4 + 3*z + 3*z^2 + 3*z' + 3*z'^2 }-> s5 :|: s3 >= 0, s3 <= 3 * z + 5, s4 >= 0, s4 <= 3 * z' + 5, s5 >= 0, s5 <= s3 + s4, z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 1 + 3*z + 3*z^2 }-> 1 + s6 :|: s6 >= 0, s6 <= 3 * z + 5, z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_plus}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: O(1) [1], size: O(n^1) [z] and: runtime: O(1) [2], size: O(n^1) [z'] encode_tt: runtime: O(1) [0], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [1 + 3*z + 3*z^2], size: O(n^1) [5 + 3*z] encode_and: runtime: O(n^2) [4 + 3*z + 3*z^2 + 3*z' + 3*z'^2], size: O(n^1) [5 + 3*z'] encode_activate: runtime: O(n^2) [22 + 15*z + 18*z^2], size: O(n^1) [7 + 3*z] ---------------------------------------- (71) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 10 + 3*z + 3*z' ---------------------------------------- (72) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 4 + s10 + 3*x_165 + 3*x_165^2 + 3*x_232 + 3*x_232^2 }-> s12 :|: s9 >= 0, s9 <= 3 * x_165 + 5, s10 >= 0, s10 <= 3 * x_232 + 5, s11 >= 0, s11 <= s9 + s10, s12 >= 0, s12 <= s11, z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 9 + -9*z + 3*z^2 }-> s15 :|: s13 >= 0, s13 <= 3 * (z - 2) + 5, s14 >= 0, s14 <= s13, s15 >= 0, s15 <= s14, z - 2 >= 0 encArg(z) -{ 3 + s1 + 3*x_1 + 3*x_1^2 + 3*x_2 + 3*x_2^2 }-> s2 :|: s'' >= 0, s'' <= 3 * x_1 + 5, s1 >= 0, s1 <= 3 * x_2 + 5, s2 >= 0, s2 <= s'' + s1, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 4 + 3*x_1 + 3*x_1^2 + 3*x_2 + 3*x_2^2 }-> s27 :|: s25 >= 0, s25 <= 3 * x_1 + 5, s26 >= 0, s26 <= 3 * x_2 + 5, s27 >= 0, s27 <= s26, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 5 + 3*x_164 + 3*x_164^2 + 3*x_231 + 3*x_231^2 }-> s34 :|: s31 >= 0, s31 <= 3 * x_164 + 5, s32 >= 0, s32 <= 3 * x_231 + 5, s33 >= 0, s33 <= s32, s34 >= 0, s34 <= s33, x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 8 + -9*z + 3*z^2 }-> s8 :|: s7 >= 0, s7 <= 3 * (z - 2) + 5, s8 >= 0, s8 <= 1 + s7, z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 + -3*z + 3*z^2 }-> 1 + s' :|: s' >= 0, s' <= 3 * (z - 1) + 5, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 + -3*z + 3*z^2 }-> s17 :|: s16 >= 0, s16 <= 3 * (z - 1) + 5, s17 >= 0, s17 <= 1 + s16, z - 1 >= 0 encode_activate(z) -{ 4 + s19 + 3*x_1101 + 3*x_1101^2 + 3*x_250 + 3*x_250^2 }-> s21 :|: s18 >= 0, s18 <= 3 * x_1101 + 5, s19 >= 0, s19 <= 3 * x_250 + 5, s20 >= 0, s20 <= s18 + s19, s21 >= 0, s21 <= s20, x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 3 + -3*z + 3*z^2 }-> s24 :|: s22 >= 0, s22 <= 3 * (z - 1) + 5, s23 >= 0, s23 <= s22, s24 >= 0, s24 <= s23, z - 1 >= 0 encode_activate(z) -{ 5 + 3*x_1100 + 3*x_1100^2 + 3*x_249 + 3*x_249^2 }-> s38 :|: s35 >= 0, s35 <= 3 * x_1100 + 5, s36 >= 0, s36 <= 3 * x_249 + 5, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37, x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 4 + 3*z + 3*z^2 + 3*z' + 3*z'^2 }-> s30 :|: s28 >= 0, s28 <= 3 * z + 5, s29 >= 0, s29 <= 3 * z' + 5, s30 >= 0, s30 <= s29, z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 3 + s4 + 3*z + 3*z^2 + 3*z' + 3*z'^2 }-> s5 :|: s3 >= 0, s3 <= 3 * z + 5, s4 >= 0, s4 <= 3 * z' + 5, s5 >= 0, s5 <= s3 + s4, z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 1 + 3*z + 3*z^2 }-> 1 + s6 :|: s6 >= 0, s6 <= 3 * z + 5, z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_plus}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: O(1) [1], size: O(n^1) [z] and: runtime: O(1) [2], size: O(n^1) [z'] encode_tt: runtime: O(1) [0], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [1 + 3*z + 3*z^2], size: O(n^1) [5 + 3*z] encode_and: runtime: O(n^2) [4 + 3*z + 3*z^2 + 3*z' + 3*z'^2], size: O(n^1) [5 + 3*z'] encode_activate: runtime: O(n^2) [22 + 15*z + 18*z^2], size: O(n^1) [7 + 3*z] encode_plus: runtime: ?, size: O(n^1) [10 + 3*z + 3*z'] ---------------------------------------- (73) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_plus after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 8 + 3*z + 3*z^2 + 6*z' + 3*z'^2 ---------------------------------------- (74) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 4 + s10 + 3*x_165 + 3*x_165^2 + 3*x_232 + 3*x_232^2 }-> s12 :|: s9 >= 0, s9 <= 3 * x_165 + 5, s10 >= 0, s10 <= 3 * x_232 + 5, s11 >= 0, s11 <= s9 + s10, s12 >= 0, s12 <= s11, z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 9 + -9*z + 3*z^2 }-> s15 :|: s13 >= 0, s13 <= 3 * (z - 2) + 5, s14 >= 0, s14 <= s13, s15 >= 0, s15 <= s14, z - 2 >= 0 encArg(z) -{ 3 + s1 + 3*x_1 + 3*x_1^2 + 3*x_2 + 3*x_2^2 }-> s2 :|: s'' >= 0, s'' <= 3 * x_1 + 5, s1 >= 0, s1 <= 3 * x_2 + 5, s2 >= 0, s2 <= s'' + s1, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 4 + 3*x_1 + 3*x_1^2 + 3*x_2 + 3*x_2^2 }-> s27 :|: s25 >= 0, s25 <= 3 * x_1 + 5, s26 >= 0, s26 <= 3 * x_2 + 5, s27 >= 0, s27 <= s26, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 5 + 3*x_164 + 3*x_164^2 + 3*x_231 + 3*x_231^2 }-> s34 :|: s31 >= 0, s31 <= 3 * x_164 + 5, s32 >= 0, s32 <= 3 * x_231 + 5, s33 >= 0, s33 <= s32, s34 >= 0, s34 <= s33, x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 8 + -9*z + 3*z^2 }-> s8 :|: s7 >= 0, s7 <= 3 * (z - 2) + 5, s8 >= 0, s8 <= 1 + s7, z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 + -3*z + 3*z^2 }-> 1 + s' :|: s' >= 0, s' <= 3 * (z - 1) + 5, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 + -3*z + 3*z^2 }-> s17 :|: s16 >= 0, s16 <= 3 * (z - 1) + 5, s17 >= 0, s17 <= 1 + s16, z - 1 >= 0 encode_activate(z) -{ 4 + s19 + 3*x_1101 + 3*x_1101^2 + 3*x_250 + 3*x_250^2 }-> s21 :|: s18 >= 0, s18 <= 3 * x_1101 + 5, s19 >= 0, s19 <= 3 * x_250 + 5, s20 >= 0, s20 <= s18 + s19, s21 >= 0, s21 <= s20, x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 3 + -3*z + 3*z^2 }-> s24 :|: s22 >= 0, s22 <= 3 * (z - 1) + 5, s23 >= 0, s23 <= s22, s24 >= 0, s24 <= s23, z - 1 >= 0 encode_activate(z) -{ 5 + 3*x_1100 + 3*x_1100^2 + 3*x_249 + 3*x_249^2 }-> s38 :|: s35 >= 0, s35 <= 3 * x_1100 + 5, s36 >= 0, s36 <= 3 * x_249 + 5, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37, x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 4 + 3*z + 3*z^2 + 3*z' + 3*z'^2 }-> s30 :|: s28 >= 0, s28 <= 3 * z + 5, s29 >= 0, s29 <= 3 * z' + 5, s30 >= 0, s30 <= s29, z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 3 + s4 + 3*z + 3*z^2 + 3*z' + 3*z'^2 }-> s5 :|: s3 >= 0, s3 <= 3 * z + 5, s4 >= 0, s4 <= 3 * z' + 5, s5 >= 0, s5 <= s3 + s4, z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 1 + 3*z + 3*z^2 }-> 1 + s6 :|: s6 >= 0, s6 <= 3 * z + 5, z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: O(1) [1], size: O(n^1) [z] and: runtime: O(1) [2], size: O(n^1) [z'] encode_tt: runtime: O(1) [0], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [1 + 3*z + 3*z^2], size: O(n^1) [5 + 3*z] encode_and: runtime: O(n^2) [4 + 3*z + 3*z^2 + 3*z' + 3*z'^2], size: O(n^1) [5 + 3*z'] encode_activate: runtime: O(n^2) [22 + 15*z + 18*z^2], size: O(n^1) [7 + 3*z] encode_plus: runtime: O(n^2) [8 + 3*z + 3*z^2 + 6*z' + 3*z'^2], size: O(n^1) [10 + 3*z + 3*z'] ---------------------------------------- (75) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (76) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 4 + s10 + 3*x_165 + 3*x_165^2 + 3*x_232 + 3*x_232^2 }-> s12 :|: s9 >= 0, s9 <= 3 * x_165 + 5, s10 >= 0, s10 <= 3 * x_232 + 5, s11 >= 0, s11 <= s9 + s10, s12 >= 0, s12 <= s11, z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 9 + -9*z + 3*z^2 }-> s15 :|: s13 >= 0, s13 <= 3 * (z - 2) + 5, s14 >= 0, s14 <= s13, s15 >= 0, s15 <= s14, z - 2 >= 0 encArg(z) -{ 3 + s1 + 3*x_1 + 3*x_1^2 + 3*x_2 + 3*x_2^2 }-> s2 :|: s'' >= 0, s'' <= 3 * x_1 + 5, s1 >= 0, s1 <= 3 * x_2 + 5, s2 >= 0, s2 <= s'' + s1, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 4 + 3*x_1 + 3*x_1^2 + 3*x_2 + 3*x_2^2 }-> s27 :|: s25 >= 0, s25 <= 3 * x_1 + 5, s26 >= 0, s26 <= 3 * x_2 + 5, s27 >= 0, s27 <= s26, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 5 + 3*x_164 + 3*x_164^2 + 3*x_231 + 3*x_231^2 }-> s34 :|: s31 >= 0, s31 <= 3 * x_164 + 5, s32 >= 0, s32 <= 3 * x_231 + 5, s33 >= 0, s33 <= s32, s34 >= 0, s34 <= s33, x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 8 + -9*z + 3*z^2 }-> s8 :|: s7 >= 0, s7 <= 3 * (z - 2) + 5, s8 >= 0, s8 <= 1 + s7, z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 + -3*z + 3*z^2 }-> 1 + s' :|: s' >= 0, s' <= 3 * (z - 1) + 5, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 + -3*z + 3*z^2 }-> s17 :|: s16 >= 0, s16 <= 3 * (z - 1) + 5, s17 >= 0, s17 <= 1 + s16, z - 1 >= 0 encode_activate(z) -{ 4 + s19 + 3*x_1101 + 3*x_1101^2 + 3*x_250 + 3*x_250^2 }-> s21 :|: s18 >= 0, s18 <= 3 * x_1101 + 5, s19 >= 0, s19 <= 3 * x_250 + 5, s20 >= 0, s20 <= s18 + s19, s21 >= 0, s21 <= s20, x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 3 + -3*z + 3*z^2 }-> s24 :|: s22 >= 0, s22 <= 3 * (z - 1) + 5, s23 >= 0, s23 <= s22, s24 >= 0, s24 <= s23, z - 1 >= 0 encode_activate(z) -{ 5 + 3*x_1100 + 3*x_1100^2 + 3*x_249 + 3*x_249^2 }-> s38 :|: s35 >= 0, s35 <= 3 * x_1100 + 5, s36 >= 0, s36 <= 3 * x_249 + 5, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37, x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 4 + 3*z + 3*z^2 + 3*z' + 3*z'^2 }-> s30 :|: s28 >= 0, s28 <= 3 * z + 5, s29 >= 0, s29 <= 3 * z' + 5, s30 >= 0, s30 <= s29, z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 3 + s4 + 3*z + 3*z^2 + 3*z' + 3*z'^2 }-> s5 :|: s3 >= 0, s3 <= 3 * z + 5, s4 >= 0, s4 <= 3 * z' + 5, s5 >= 0, s5 <= s3 + s4, z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 1 + 3*z + 3*z^2 }-> 1 + s6 :|: s6 >= 0, s6 <= 3 * z + 5, z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: O(1) [1], size: O(n^1) [z] and: runtime: O(1) [2], size: O(n^1) [z'] encode_tt: runtime: O(1) [0], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [1 + 3*z + 3*z^2], size: O(n^1) [5 + 3*z] encode_and: runtime: O(n^2) [4 + 3*z + 3*z^2 + 3*z' + 3*z'^2], size: O(n^1) [5 + 3*z'] encode_activate: runtime: O(n^2) [22 + 15*z + 18*z^2], size: O(n^1) [7 + 3*z] encode_plus: runtime: O(n^2) [8 + 3*z + 3*z^2 + 6*z' + 3*z'^2], size: O(n^1) [10 + 3*z + 3*z'] ---------------------------------------- (77) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 6 + 3*z ---------------------------------------- (78) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 4 + s10 + 3*x_165 + 3*x_165^2 + 3*x_232 + 3*x_232^2 }-> s12 :|: s9 >= 0, s9 <= 3 * x_165 + 5, s10 >= 0, s10 <= 3 * x_232 + 5, s11 >= 0, s11 <= s9 + s10, s12 >= 0, s12 <= s11, z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 9 + -9*z + 3*z^2 }-> s15 :|: s13 >= 0, s13 <= 3 * (z - 2) + 5, s14 >= 0, s14 <= s13, s15 >= 0, s15 <= s14, z - 2 >= 0 encArg(z) -{ 3 + s1 + 3*x_1 + 3*x_1^2 + 3*x_2 + 3*x_2^2 }-> s2 :|: s'' >= 0, s'' <= 3 * x_1 + 5, s1 >= 0, s1 <= 3 * x_2 + 5, s2 >= 0, s2 <= s'' + s1, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 4 + 3*x_1 + 3*x_1^2 + 3*x_2 + 3*x_2^2 }-> s27 :|: s25 >= 0, s25 <= 3 * x_1 + 5, s26 >= 0, s26 <= 3 * x_2 + 5, s27 >= 0, s27 <= s26, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 5 + 3*x_164 + 3*x_164^2 + 3*x_231 + 3*x_231^2 }-> s34 :|: s31 >= 0, s31 <= 3 * x_164 + 5, s32 >= 0, s32 <= 3 * x_231 + 5, s33 >= 0, s33 <= s32, s34 >= 0, s34 <= s33, x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 8 + -9*z + 3*z^2 }-> s8 :|: s7 >= 0, s7 <= 3 * (z - 2) + 5, s8 >= 0, s8 <= 1 + s7, z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 + -3*z + 3*z^2 }-> 1 + s' :|: s' >= 0, s' <= 3 * (z - 1) + 5, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 + -3*z + 3*z^2 }-> s17 :|: s16 >= 0, s16 <= 3 * (z - 1) + 5, s17 >= 0, s17 <= 1 + s16, z - 1 >= 0 encode_activate(z) -{ 4 + s19 + 3*x_1101 + 3*x_1101^2 + 3*x_250 + 3*x_250^2 }-> s21 :|: s18 >= 0, s18 <= 3 * x_1101 + 5, s19 >= 0, s19 <= 3 * x_250 + 5, s20 >= 0, s20 <= s18 + s19, s21 >= 0, s21 <= s20, x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 3 + -3*z + 3*z^2 }-> s24 :|: s22 >= 0, s22 <= 3 * (z - 1) + 5, s23 >= 0, s23 <= s22, s24 >= 0, s24 <= s23, z - 1 >= 0 encode_activate(z) -{ 5 + 3*x_1100 + 3*x_1100^2 + 3*x_249 + 3*x_249^2 }-> s38 :|: s35 >= 0, s35 <= 3 * x_1100 + 5, s36 >= 0, s36 <= 3 * x_249 + 5, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37, x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 4 + 3*z + 3*z^2 + 3*z' + 3*z'^2 }-> s30 :|: s28 >= 0, s28 <= 3 * z + 5, s29 >= 0, s29 <= 3 * z' + 5, s30 >= 0, s30 <= s29, z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 3 + s4 + 3*z + 3*z^2 + 3*z' + 3*z'^2 }-> s5 :|: s3 >= 0, s3 <= 3 * z + 5, s4 >= 0, s4 <= 3 * z' + 5, s5 >= 0, s5 <= s3 + s4, z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 1 + 3*z + 3*z^2 }-> 1 + s6 :|: s6 >= 0, s6 <= 3 * z + 5, z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: O(1) [1], size: O(n^1) [z] and: runtime: O(1) [2], size: O(n^1) [z'] encode_tt: runtime: O(1) [0], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [1 + 3*z + 3*z^2], size: O(n^1) [5 + 3*z] encode_and: runtime: O(n^2) [4 + 3*z + 3*z^2 + 3*z' + 3*z'^2], size: O(n^1) [5 + 3*z'] encode_activate: runtime: O(n^2) [22 + 15*z + 18*z^2], size: O(n^1) [7 + 3*z] encode_plus: runtime: O(n^2) [8 + 3*z + 3*z^2 + 6*z' + 3*z'^2], size: O(n^1) [10 + 3*z + 3*z'] encode_s: runtime: ?, size: O(n^1) [6 + 3*z] ---------------------------------------- (79) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + 3*z + 3*z^2 ---------------------------------------- (80) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 and(z, z') -{ 2 }-> z' :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encArg(z) -{ 1 }-> X :|: z = 1 + 1, X >= 0, 1 = X encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 4 + s10 + 3*x_165 + 3*x_165^2 + 3*x_232 + 3*x_232^2 }-> s12 :|: s9 >= 0, s9 <= 3 * x_165 + 5, s10 >= 0, s10 <= 3 * x_232 + 5, s11 >= 0, s11 <= s9 + s10, s12 >= 0, s12 <= s11, z = 1 + (1 + x_165 + x_232), x_232 >= 0, x_165 >= 0 encArg(z) -{ 9 + -9*z + 3*z^2 }-> s15 :|: s13 >= 0, s13 <= 3 * (z - 2) + 5, s14 >= 0, s14 <= s13, s15 >= 0, s15 <= s14, z - 2 >= 0 encArg(z) -{ 3 + s1 + 3*x_1 + 3*x_1^2 + 3*x_2 + 3*x_2^2 }-> s2 :|: s'' >= 0, s'' <= 3 * x_1 + 5, s1 >= 0, s1 <= 3 * x_2 + 5, s2 >= 0, s2 <= s'' + s1, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 4 + 3*x_1 + 3*x_1^2 + 3*x_2 + 3*x_2^2 }-> s27 :|: s25 >= 0, s25 <= 3 * x_1 + 5, s26 >= 0, s26 <= 3 * x_2 + 5, s27 >= 0, s27 <= s26, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 5 + 3*x_164 + 3*x_164^2 + 3*x_231 + 3*x_231^2 }-> s34 :|: s31 >= 0, s31 <= 3 * x_164 + 5, s32 >= 0, s32 <= 3 * x_231 + 5, s33 >= 0, s33 <= s32, s34 >= 0, s34 <= s33, x_164 >= 0, x_231 >= 0, z = 1 + (1 + x_164 + x_231) encArg(z) -{ 8 + -9*z + 3*z^2 }-> s8 :|: s7 >= 0, s7 <= 3 * (z - 2) + 5, s8 >= 0, s8 <= 1 + s7, z - 2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 + -3*z + 3*z^2 }-> 1 + s' :|: s' >= 0, s' <= 3 * (z - 1) + 5, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 1, X >= 0, 1 = X encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 + -3*z + 3*z^2 }-> s17 :|: s16 >= 0, s16 <= 3 * (z - 1) + 5, s17 >= 0, s17 <= 1 + s16, z - 1 >= 0 encode_activate(z) -{ 4 + s19 + 3*x_1101 + 3*x_1101^2 + 3*x_250 + 3*x_250^2 }-> s21 :|: s18 >= 0, s18 <= 3 * x_1101 + 5, s19 >= 0, s19 <= 3 * x_250 + 5, s20 >= 0, s20 <= s18 + s19, s21 >= 0, s21 <= s20, x_250 >= 0, x_1101 >= 0, z = 1 + x_1101 + x_250 encode_activate(z) -{ 3 + -3*z + 3*z^2 }-> s24 :|: s22 >= 0, s22 <= 3 * (z - 1) + 5, s23 >= 0, s23 <= s22, s24 >= 0, s24 <= s23, z - 1 >= 0 encode_activate(z) -{ 5 + 3*x_1100 + 3*x_1100^2 + 3*x_249 + 3*x_249^2 }-> s38 :|: s35 >= 0, s35 <= 3 * x_1100 + 5, s36 >= 0, s36 <= 3 * x_249 + 5, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37, x_1100 >= 0, x_249 >= 0, z = 1 + x_1100 + x_249 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_and(z, z') -{ 4 + 3*z + 3*z^2 + 3*z' + 3*z'^2 }-> s30 :|: s28 >= 0, s28 <= 3 * z + 5, s29 >= 0, s29 <= 3 * z' + 5, s30 >= 0, s30 <= s29, z >= 0, z' >= 0 encode_and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_plus(z, z') -{ 3 + s4 + 3*z + 3*z^2 + 3*z' + 3*z'^2 }-> s5 :|: s3 >= 0, s3 <= 3 * z + 5, s4 >= 0, s4 <= 3 * z' + 5, s5 >= 0, s5 <= s3 + s4, z >= 0, z' >= 0 encode_plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 1 + 3*z + 3*z^2 }-> 1 + s6 :|: s6 >= 0, s6 <= 3 * z + 5, z >= 0 encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: plus(z, z') -{ 1 }-> z :|: z' = 0, z >= 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z' - 1 >= 0, z >= 0 Function symbols to be analyzed: Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] activate: runtime: O(1) [1], size: O(n^1) [z] and: runtime: O(1) [2], size: O(n^1) [z'] encode_tt: runtime: O(1) [0], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [1 + 3*z + 3*z^2], size: O(n^1) [5 + 3*z] encode_and: runtime: O(n^2) [4 + 3*z + 3*z^2 + 3*z' + 3*z'^2], size: O(n^1) [5 + 3*z'] encode_activate: runtime: O(n^2) [22 + 15*z + 18*z^2], size: O(n^1) [7 + 3*z] encode_plus: runtime: O(n^2) [8 + 3*z + 3*z^2 + 6*z' + 3*z'^2], size: O(n^1) [10 + 3*z + 3*z'] encode_s: runtime: O(n^2) [1 + 3*z + 3*z^2], size: O(n^1) [6 + 3*z] ---------------------------------------- (81) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (82) BOUNDS(1, n^2) ---------------------------------------- (83) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (84) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: and(tt, X) -> activate(X) plus(N, 0) -> N plus(N, s(M)) -> s(plus(N, M)) activate(X) -> X The (relative) TRS S consists of the following rules: encArg(tt) -> tt encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_activate(x_1) -> activate(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (85) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence plus(N, s(M)) ->^+ s(plus(N, M)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [M / s(M)]. The result substitution is [ ]. ---------------------------------------- (86) Complex Obligation (BEST) ---------------------------------------- (87) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: and(tt, X) -> activate(X) plus(N, 0) -> N plus(N, s(M)) -> s(plus(N, M)) activate(X) -> X The (relative) TRS S consists of the following rules: encArg(tt) -> tt encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_activate(x_1) -> activate(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (88) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (89) BOUNDS(n^1, INF) ---------------------------------------- (90) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: and(tt, X) -> activate(X) plus(N, 0) -> N plus(N, s(M)) -> s(plus(N, M)) activate(X) -> X The (relative) TRS S consists of the following rules: encArg(tt) -> tt encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_activate(x_1) -> activate(encArg(x_1)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST