/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 65 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (14) CdtProblem (15) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 70 ms] (18) CdtProblem (19) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 24 ms] (20) CdtProblem (21) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 23 ms] (22) CdtProblem (23) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (24) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: h(X) -> g(X) g(a) -> f(b) f(X) -> h(a) a -> b S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(b) -> b encArg(cons_h(x_1)) -> h(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_a) -> a encode_h(x_1) -> h(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a encode_f(x_1) -> f(encArg(x_1)) encode_b -> b ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: h(X) -> g(X) g(a) -> f(b) f(X) -> h(a) a -> b The (relative) TRS S consists of the following rules: encArg(b) -> b encArg(cons_h(x_1)) -> h(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_a) -> a encode_h(x_1) -> h(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a encode_f(x_1) -> f(encArg(x_1)) encode_b -> b Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: h(X) -> g(X) g(a) -> f(b) f(X) -> h(a) a -> b The (relative) TRS S consists of the following rules: encArg(b) -> b encArg(cons_h(x_1)) -> h(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_a) -> a encode_h(x_1) -> h(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a encode_f(x_1) -> f(encArg(x_1)) encode_b -> b Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_h(z0)) -> h(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a encode_h(z0) -> h(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_a -> a encode_f(z0) -> f(encArg(z0)) encode_b -> b h(z0) -> g(z0) g(a) -> f(b) f(z0) -> h(a) a -> b Tuples: ENCARG(b) -> c ENCARG(cons_h(z0)) -> c1(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c2(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c4(A) ENCODE_H(z0) -> c5(H(encArg(z0)), ENCARG(z0)) ENCODE_G(z0) -> c6(G(encArg(z0)), ENCARG(z0)) ENCODE_A -> c7(A) ENCODE_F(z0) -> c8(F(encArg(z0)), ENCARG(z0)) ENCODE_B -> c9 H(z0) -> c10(G(z0)) G(a) -> c11(F(b)) F(z0) -> c12(H(a), A) A -> c13 S tuples: H(z0) -> c10(G(z0)) G(a) -> c11(F(b)) F(z0) -> c12(H(a), A) A -> c13 K tuples:none Defined Rule Symbols: h_1, g_1, f_1, a, encArg_1, encode_h_1, encode_g_1, encode_a, encode_f_1, encode_b Defined Pair Symbols: ENCARG_1, ENCODE_H_1, ENCODE_G_1, ENCODE_A, ENCODE_F_1, ENCODE_B, H_1, G_1, F_1, A Compound Symbols: c, c1_2, c2_2, c3_2, c4_1, c5_2, c6_2, c7_1, c8_2, c9, c10_1, c11_1, c12_2, c13 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_A -> c7(A) G(a) -> c11(F(b)) Removed 2 trailing nodes: ENCODE_B -> c9 ENCARG(b) -> c ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_h(z0)) -> h(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a encode_h(z0) -> h(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_a -> a encode_f(z0) -> f(encArg(z0)) encode_b -> b h(z0) -> g(z0) g(a) -> f(b) f(z0) -> h(a) a -> b Tuples: ENCARG(cons_h(z0)) -> c1(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c2(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c4(A) ENCODE_H(z0) -> c5(H(encArg(z0)), ENCARG(z0)) ENCODE_G(z0) -> c6(G(encArg(z0)), ENCARG(z0)) ENCODE_F(z0) -> c8(F(encArg(z0)), ENCARG(z0)) H(z0) -> c10(G(z0)) F(z0) -> c12(H(a), A) A -> c13 S tuples: H(z0) -> c10(G(z0)) F(z0) -> c12(H(a), A) A -> c13 K tuples:none Defined Rule Symbols: h_1, g_1, f_1, a, encArg_1, encode_h_1, encode_g_1, encode_a, encode_f_1, encode_b Defined Pair Symbols: ENCARG_1, ENCODE_H_1, ENCODE_G_1, ENCODE_F_1, H_1, F_1, A Compound Symbols: c1_2, c2_2, c3_2, c4_1, c5_2, c6_2, c8_2, c10_1, c12_2, c13 ---------------------------------------- (9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 3 trailing tuple parts ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_h(z0)) -> h(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a encode_h(z0) -> h(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_a -> a encode_f(z0) -> f(encArg(z0)) encode_b -> b h(z0) -> g(z0) g(a) -> f(b) f(z0) -> h(a) a -> b Tuples: ENCARG(cons_h(z0)) -> c1(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c4(A) ENCODE_H(z0) -> c5(H(encArg(z0)), ENCARG(z0)) ENCODE_F(z0) -> c8(F(encArg(z0)), ENCARG(z0)) F(z0) -> c12(H(a), A) A -> c13 ENCARG(cons_g(z0)) -> c2(ENCARG(z0)) ENCODE_G(z0) -> c6(ENCARG(z0)) H(z0) -> c10 S tuples: F(z0) -> c12(H(a), A) A -> c13 H(z0) -> c10 K tuples:none Defined Rule Symbols: h_1, g_1, f_1, a, encArg_1, encode_h_1, encode_g_1, encode_a, encode_f_1, encode_b Defined Pair Symbols: ENCARG_1, ENCODE_H_1, ENCODE_F_1, F_1, A, ENCODE_G_1, H_1 Compound Symbols: c1_2, c3_2, c4_1, c5_2, c8_2, c12_2, c13, c2_1, c6_1, c10 ---------------------------------------- (11) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_h(z0)) -> h(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a encode_h(z0) -> h(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_a -> a encode_f(z0) -> f(encArg(z0)) encode_b -> b h(z0) -> g(z0) g(a) -> f(b) f(z0) -> h(a) a -> b Tuples: ENCARG(cons_h(z0)) -> c1(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c4(A) A -> c13 ENCARG(cons_g(z0)) -> c2(ENCARG(z0)) ENCODE_G(z0) -> c6(ENCARG(z0)) H(z0) -> c10 ENCODE_H(z0) -> c(H(encArg(z0))) ENCODE_H(z0) -> c(ENCARG(z0)) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_F(z0) -> c(ENCARG(z0)) F(z0) -> c(H(a)) F(z0) -> c(A) S tuples: A -> c13 H(z0) -> c10 F(z0) -> c(H(a)) F(z0) -> c(A) K tuples:none Defined Rule Symbols: h_1, g_1, f_1, a, encArg_1, encode_h_1, encode_g_1, encode_a, encode_f_1, encode_b Defined Pair Symbols: ENCARG_1, A, ENCODE_G_1, H_1, ENCODE_H_1, ENCODE_F_1, F_1 Compound Symbols: c1_2, c3_2, c4_1, c13, c2_1, c6_1, c10, c_1 ---------------------------------------- (13) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 3 leading nodes: ENCODE_G(z0) -> c6(ENCARG(z0)) ENCODE_H(z0) -> c(ENCARG(z0)) ENCODE_F(z0) -> c(ENCARG(z0)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_h(z0)) -> h(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a encode_h(z0) -> h(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_a -> a encode_f(z0) -> f(encArg(z0)) encode_b -> b h(z0) -> g(z0) g(a) -> f(b) f(z0) -> h(a) a -> b Tuples: ENCARG(cons_h(z0)) -> c1(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c4(A) A -> c13 ENCARG(cons_g(z0)) -> c2(ENCARG(z0)) H(z0) -> c10 ENCODE_H(z0) -> c(H(encArg(z0))) ENCODE_F(z0) -> c(F(encArg(z0))) F(z0) -> c(H(a)) F(z0) -> c(A) S tuples: A -> c13 H(z0) -> c10 F(z0) -> c(H(a)) F(z0) -> c(A) K tuples:none Defined Rule Symbols: h_1, g_1, f_1, a, encArg_1, encode_h_1, encode_g_1, encode_a, encode_f_1, encode_b Defined Pair Symbols: ENCARG_1, A, H_1, ENCODE_H_1, ENCODE_F_1, F_1 Compound Symbols: c1_2, c3_2, c4_1, c13, c2_1, c10, c_1 ---------------------------------------- (15) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_h(z0) -> h(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_a -> a encode_f(z0) -> f(encArg(z0)) encode_b -> b g(a) -> f(b) ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_h(z0)) -> h(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a h(z0) -> g(z0) f(z0) -> h(a) a -> b Tuples: ENCARG(cons_h(z0)) -> c1(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c4(A) A -> c13 ENCARG(cons_g(z0)) -> c2(ENCARG(z0)) H(z0) -> c10 ENCODE_H(z0) -> c(H(encArg(z0))) ENCODE_F(z0) -> c(F(encArg(z0))) F(z0) -> c(H(a)) F(z0) -> c(A) S tuples: A -> c13 H(z0) -> c10 F(z0) -> c(H(a)) F(z0) -> c(A) K tuples:none Defined Rule Symbols: encArg_1, h_1, f_1, a Defined Pair Symbols: ENCARG_1, A, H_1, ENCODE_H_1, ENCODE_F_1, F_1 Compound Symbols: c1_2, c3_2, c4_1, c13, c2_1, c10, c_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. A -> c13 F(z0) -> c(H(a)) We considered the (Usable) Rules:none And the Tuples: ENCARG(cons_h(z0)) -> c1(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c4(A) A -> c13 ENCARG(cons_g(z0)) -> c2(ENCARG(z0)) H(z0) -> c10 ENCODE_H(z0) -> c(H(encArg(z0))) ENCODE_F(z0) -> c(F(encArg(z0))) F(z0) -> c(H(a)) F(z0) -> c(A) The order we found is given by the following interpretation: Polynomial interpretation : POL(A) = [2] POL(ENCARG(x_1)) = [2] + x_1 POL(ENCODE_F(x_1)) = [2] + x_1 POL(ENCODE_H(x_1)) = x_1 POL(F(x_1)) = [2] POL(H(x_1)) = 0 POL(a) = 0 POL(b) = 0 POL(c(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c10) = 0 POL(c13) = 0 POL(c2(x_1)) = x_1 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1)) = x_1 POL(cons_a) = 0 POL(cons_f(x_1)) = [2] + x_1 POL(cons_g(x_1)) = [2] + x_1 POL(cons_h(x_1)) = x_1 POL(encArg(x_1)) = [3]x_1 POL(f(x_1)) = x_1 POL(g(x_1)) = 0 POL(h(x_1)) = 0 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_h(z0)) -> h(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a h(z0) -> g(z0) f(z0) -> h(a) a -> b Tuples: ENCARG(cons_h(z0)) -> c1(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c4(A) A -> c13 ENCARG(cons_g(z0)) -> c2(ENCARG(z0)) H(z0) -> c10 ENCODE_H(z0) -> c(H(encArg(z0))) ENCODE_F(z0) -> c(F(encArg(z0))) F(z0) -> c(H(a)) F(z0) -> c(A) S tuples: H(z0) -> c10 F(z0) -> c(A) K tuples: A -> c13 F(z0) -> c(H(a)) Defined Rule Symbols: encArg_1, h_1, f_1, a Defined Pair Symbols: ENCARG_1, A, H_1, ENCODE_H_1, ENCODE_F_1, F_1 Compound Symbols: c1_2, c3_2, c4_1, c13, c2_1, c10, c_1 ---------------------------------------- (19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. H(z0) -> c10 We considered the (Usable) Rules:none And the Tuples: ENCARG(cons_h(z0)) -> c1(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c4(A) A -> c13 ENCARG(cons_g(z0)) -> c2(ENCARG(z0)) H(z0) -> c10 ENCODE_H(z0) -> c(H(encArg(z0))) ENCODE_F(z0) -> c(F(encArg(z0))) F(z0) -> c(H(a)) F(z0) -> c(A) The order we found is given by the following interpretation: Polynomial interpretation : POL(A) = [1] POL(ENCARG(x_1)) = x_1 POL(ENCODE_F(x_1)) = [1] + x_1 POL(ENCODE_H(x_1)) = [1] POL(F(x_1)) = [1] POL(H(x_1)) = [1] POL(a) = [1] POL(b) = [1] POL(c(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c10) = 0 POL(c13) = 0 POL(c2(x_1)) = x_1 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1)) = x_1 POL(cons_a) = [1] POL(cons_f(x_1)) = [1] + x_1 POL(cons_g(x_1)) = x_1 POL(cons_h(x_1)) = [1] + x_1 POL(encArg(x_1)) = [1] + x_1 POL(f(x_1)) = [1] + x_1 POL(g(x_1)) = [1] POL(h(x_1)) = [1] ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_h(z0)) -> h(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a h(z0) -> g(z0) f(z0) -> h(a) a -> b Tuples: ENCARG(cons_h(z0)) -> c1(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c4(A) A -> c13 ENCARG(cons_g(z0)) -> c2(ENCARG(z0)) H(z0) -> c10 ENCODE_H(z0) -> c(H(encArg(z0))) ENCODE_F(z0) -> c(F(encArg(z0))) F(z0) -> c(H(a)) F(z0) -> c(A) S tuples: F(z0) -> c(A) K tuples: A -> c13 F(z0) -> c(H(a)) H(z0) -> c10 Defined Rule Symbols: encArg_1, h_1, f_1, a Defined Pair Symbols: ENCARG_1, A, H_1, ENCODE_H_1, ENCODE_F_1, F_1 Compound Symbols: c1_2, c3_2, c4_1, c13, c2_1, c10, c_1 ---------------------------------------- (21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(z0) -> c(A) We considered the (Usable) Rules:none And the Tuples: ENCARG(cons_h(z0)) -> c1(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c4(A) A -> c13 ENCARG(cons_g(z0)) -> c2(ENCARG(z0)) H(z0) -> c10 ENCODE_H(z0) -> c(H(encArg(z0))) ENCODE_F(z0) -> c(F(encArg(z0))) F(z0) -> c(H(a)) F(z0) -> c(A) The order we found is given by the following interpretation: Polynomial interpretation : POL(A) = 0 POL(ENCARG(x_1)) = [1] + x_1 POL(ENCODE_F(x_1)) = [1] POL(ENCODE_H(x_1)) = [1] POL(F(x_1)) = [1] POL(H(x_1)) = [1] POL(a) = 0 POL(b) = 0 POL(c(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c10) = 0 POL(c13) = 0 POL(c2(x_1)) = x_1 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1)) = x_1 POL(cons_a) = 0 POL(cons_f(x_1)) = [1] + x_1 POL(cons_g(x_1)) = [1] + x_1 POL(cons_h(x_1)) = [1] + x_1 POL(encArg(x_1)) = [1] + x_1 POL(f(x_1)) = [1] + x_1 POL(g(x_1)) = [1] + x_1 POL(h(x_1)) = [1] + x_1 ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_h(z0)) -> h(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a h(z0) -> g(z0) f(z0) -> h(a) a -> b Tuples: ENCARG(cons_h(z0)) -> c1(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_f(z0)) -> c3(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c4(A) A -> c13 ENCARG(cons_g(z0)) -> c2(ENCARG(z0)) H(z0) -> c10 ENCODE_H(z0) -> c(H(encArg(z0))) ENCODE_F(z0) -> c(F(encArg(z0))) F(z0) -> c(H(a)) F(z0) -> c(A) S tuples:none K tuples: A -> c13 F(z0) -> c(H(a)) H(z0) -> c10 F(z0) -> c(A) Defined Rule Symbols: encArg_1, h_1, f_1, a Defined Pair Symbols: ENCARG_1, A, H_1, ENCODE_H_1, ENCODE_F_1, F_1 Compound Symbols: c1_2, c3_2, c4_1, c13, c2_1, c10, c_1 ---------------------------------------- (23) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (24) BOUNDS(1, 1)