/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 196 ms] (4) CpxRelTRS (5) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (6) CpxRelTRS (7) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxWeightedTrs (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedTrs (11) CompletionProof [UPPER BOUND(ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) CompleteCoflocoProof [FINISHED, 535 ms] (16) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: h(X) -> g(X, X) g(a, X) -> f(b, activate(X)) f(X, X) -> h(a) a -> b activate(X) -> X S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(b) -> b encArg(cons_h(x_1)) -> h(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_a) -> a encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_a -> a encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_b -> b encode_activate(x_1) -> activate(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: h(X) -> g(X, X) g(a, X) -> f(b, activate(X)) f(X, X) -> h(a) a -> b activate(X) -> X The (relative) TRS S consists of the following rules: encArg(b) -> b encArg(cons_h(x_1)) -> h(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_a) -> a encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_a -> a encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_b -> b encode_activate(x_1) -> activate(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: h(X) -> g(X, X) g(a, X) -> f(b, activate(X)) f(X, X) -> h(a) a -> b activate(X) -> X The (relative) TRS S consists of the following rules: encArg(b) -> b encArg(cons_h(x_1)) -> h(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_a) -> a encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_a -> a encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_b -> b encode_activate(x_1) -> activate(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: h(X) -> g(X, X) f(X, X) -> h(a) a -> b activate(X) -> X g(c_a, X) -> f(b, activate(X)) The (relative) TRS S consists of the following rules: encArg(b) -> b encArg(cons_h(x_1)) -> h(encArg(x_1)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_a) -> a encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_a -> a encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_b -> b encode_activate(x_1) -> activate(encArg(x_1)) a -> c_a Rewrite Strategy: INNERMOST ---------------------------------------- (7) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: h(X) -> g(X, X) [1] f(X, X) -> h(a) [1] a -> b [1] activate(X) -> X [1] g(c_a, X) -> f(b, activate(X)) [1] encArg(b) -> b [0] encArg(cons_h(x_1)) -> h(encArg(x_1)) [0] encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_a) -> a [0] encArg(cons_activate(x_1)) -> activate(encArg(x_1)) [0] encode_h(x_1) -> h(encArg(x_1)) [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] encode_a -> a [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_b -> b [0] encode_activate(x_1) -> activate(encArg(x_1)) [0] a -> c_a [0] Rewrite Strategy: INNERMOST ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: h(X) -> g(X, X) [1] f(X, X) -> h(a) [1] a -> b [1] activate(X) -> X [1] g(c_a, X) -> f(b, activate(X)) [1] encArg(b) -> b [0] encArg(cons_h(x_1)) -> h(encArg(x_1)) [0] encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_a) -> a [0] encArg(cons_activate(x_1)) -> activate(encArg(x_1)) [0] encode_h(x_1) -> h(encArg(x_1)) [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] encode_a -> a [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_b -> b [0] encode_activate(x_1) -> activate(encArg(x_1)) [0] a -> c_a [0] The TRS has the following type information: h :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate g :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate f :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate a :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate b :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate activate :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate c_a :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate encArg :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate cons_h :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate cons_g :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate cons_f :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate cons_a :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate cons_activate :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate encode_h :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate encode_g :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate encode_a :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate encode_f :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate encode_b :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate encode_activate :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate Rewrite Strategy: INNERMOST ---------------------------------------- (11) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: encArg(v0) -> null_encArg [0] encode_h(v0) -> null_encode_h [0] encode_g(v0, v1) -> null_encode_g [0] encode_a -> null_encode_a [0] encode_f(v0, v1) -> null_encode_f [0] encode_b -> null_encode_b [0] encode_activate(v0) -> null_encode_activate [0] a -> null_a [0] f(v0, v1) -> null_f [0] g(v0, v1) -> null_g [0] And the following fresh constants: null_encArg, null_encode_h, null_encode_g, null_encode_a, null_encode_f, null_encode_b, null_encode_activate, null_a, null_f, null_g ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: h(X) -> g(X, X) [1] f(X, X) -> h(a) [1] a -> b [1] activate(X) -> X [1] g(c_a, X) -> f(b, activate(X)) [1] encArg(b) -> b [0] encArg(cons_h(x_1)) -> h(encArg(x_1)) [0] encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_a) -> a [0] encArg(cons_activate(x_1)) -> activate(encArg(x_1)) [0] encode_h(x_1) -> h(encArg(x_1)) [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] encode_a -> a [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_b -> b [0] encode_activate(x_1) -> activate(encArg(x_1)) [0] a -> c_a [0] encArg(v0) -> null_encArg [0] encode_h(v0) -> null_encode_h [0] encode_g(v0, v1) -> null_encode_g [0] encode_a -> null_encode_a [0] encode_f(v0, v1) -> null_encode_f [0] encode_b -> null_encode_b [0] encode_activate(v0) -> null_encode_activate [0] a -> null_a [0] f(v0, v1) -> null_f [0] g(v0, v1) -> null_g [0] The TRS has the following type information: h :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g g :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g f :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g a :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g b :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g activate :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g c_a :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g encArg :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g cons_h :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g cons_g :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g cons_f :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g cons_a :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g cons_activate :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g encode_h :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g encode_g :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g encode_a :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g encode_f :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g encode_b :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g encode_activate :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g -> b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g null_encArg :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g null_encode_h :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g null_encode_g :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g null_encode_a :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g null_encode_f :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g null_encode_b :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g null_encode_activate :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g null_a :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g null_f :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g null_g :: b:c_a:cons_h:cons_g:cons_f:cons_a:cons_activate:null_encArg:null_encode_h:null_encode_g:null_encode_a:null_encode_f:null_encode_b:null_encode_activate:null_a:null_f:null_g Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: b => 0 c_a => 1 cons_a => 2 null_encArg => 0 null_encode_h => 0 null_encode_g => 0 null_encode_a => 0 null_encode_f => 0 null_encode_b => 0 null_encode_activate => 0 null_a => 0 null_f => 0 null_g => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: a -{ 0 }-> 1 :|: a -{ 1 }-> 0 :|: a -{ 0 }-> 0 :|: activate(z) -{ 1 }-> X :|: X >= 0, z = X encArg(z) -{ 0 }-> h(encArg(x_1)) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(encArg(x_1)) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> a :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_a -{ 0 }-> a :|: encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 0 }-> activate(encArg(x_1)) :|: x_1 >= 0, z = x_1 encode_activate(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_b -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_g(z, z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_g(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_h(z) -{ 0 }-> h(encArg(x_1)) :|: x_1 >= 0, z = x_1 encode_h(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 f(z, z') -{ 1 }-> h(a) :|: z' = X, X >= 0, z = X f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 g(z, z') -{ 1 }-> f(0, activate(X)) :|: z' = X, z = 1, X >= 0 g(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 h(z) -{ 1 }-> g(X, X) :|: X >= 0, z = X Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (15) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V, V1),0,[h(V, Out)],[V >= 0]). eq(start(V, V1),0,[f(V, V1, Out)],[V >= 0,V1 >= 0]). eq(start(V, V1),0,[a(Out)],[]). eq(start(V, V1),0,[activate(V, Out)],[V >= 0]). eq(start(V, V1),0,[g(V, V1, Out)],[V >= 0,V1 >= 0]). eq(start(V, V1),0,[encArg(V, Out)],[V >= 0]). eq(start(V, V1),0,[fun(V, Out)],[V >= 0]). eq(start(V, V1),0,[fun1(V, V1, Out)],[V >= 0,V1 >= 0]). eq(start(V, V1),0,[fun2(Out)],[]). eq(start(V, V1),0,[fun3(V, V1, Out)],[V >= 0,V1 >= 0]). eq(start(V, V1),0,[fun4(Out)],[]). eq(start(V, V1),0,[fun5(V, Out)],[V >= 0]). eq(h(V, Out),1,[g(X1, X1, Ret)],[Out = Ret,X1 >= 0,V = X1]). eq(f(V, V1, Out),1,[a(Ret0),h(Ret0, Ret1)],[Out = Ret1,V1 = X2,X2 >= 0,V = X2]). eq(a(Out),1,[],[Out = 0]). eq(activate(V, Out),1,[],[Out = X3,X3 >= 0,V = X3]). eq(g(V, V1, Out),1,[activate(X4, Ret11),f(0, Ret11, Ret2)],[Out = Ret2,V1 = X4,V = 1,X4 >= 0]). eq(encArg(V, Out),0,[],[Out = 0,V = 0]). eq(encArg(V, Out),0,[encArg(V2, Ret01),h(Ret01, Ret3)],[Out = Ret3,V = 1 + V2,V2 >= 0]). eq(encArg(V, Out),0,[encArg(V3, Ret02),encArg(V4, Ret12),g(Ret02, Ret12, Ret4)],[Out = Ret4,V3 >= 0,V = 1 + V3 + V4,V4 >= 0]). eq(encArg(V, Out),0,[encArg(V5, Ret03),encArg(V6, Ret13),f(Ret03, Ret13, Ret5)],[Out = Ret5,V5 >= 0,V = 1 + V5 + V6,V6 >= 0]). eq(encArg(V, Out),0,[a(Ret6)],[Out = Ret6,V = 2]). eq(encArg(V, Out),0,[encArg(V7, Ret04),activate(Ret04, Ret7)],[Out = Ret7,V = 1 + V7,V7 >= 0]). eq(fun(V, Out),0,[encArg(V8, Ret05),h(Ret05, Ret8)],[Out = Ret8,V8 >= 0,V = V8]). eq(fun1(V, V1, Out),0,[encArg(V10, Ret06),encArg(V9, Ret14),g(Ret06, Ret14, Ret9)],[Out = Ret9,V10 >= 0,V9 >= 0,V = V10,V1 = V9]). eq(fun2(Out),0,[a(Ret10)],[Out = Ret10]). eq(fun3(V, V1, Out),0,[encArg(V12, Ret07),encArg(V11, Ret15),f(Ret07, Ret15, Ret16)],[Out = Ret16,V12 >= 0,V11 >= 0,V = V12,V1 = V11]). eq(fun4(Out),0,[],[Out = 0]). eq(fun5(V, Out),0,[encArg(V13, Ret08),activate(Ret08, Ret17)],[Out = Ret17,V13 >= 0,V = V13]). eq(a(Out),0,[],[Out = 1]). eq(encArg(V, Out),0,[],[Out = 0,V14 >= 0,V = V14]). eq(fun(V, Out),0,[],[Out = 0,V15 >= 0,V = V15]). eq(fun1(V, V1, Out),0,[],[Out = 0,V17 >= 0,V16 >= 0,V = V17,V1 = V16]). eq(fun2(Out),0,[],[Out = 0]). eq(fun3(V, V1, Out),0,[],[Out = 0,V18 >= 0,V19 >= 0,V = V18,V1 = V19]). eq(fun5(V, Out),0,[],[Out = 0,V20 >= 0,V = V20]). eq(a(Out),0,[],[Out = 0]). eq(f(V, V1, Out),0,[],[Out = 0,V21 >= 0,V22 >= 0,V = V21,V1 = V22]). eq(g(V, V1, Out),0,[],[Out = 0,V23 >= 0,V24 >= 0,V = V23,V1 = V24]). input_output_vars(h(V,Out),[V],[Out]). input_output_vars(f(V,V1,Out),[V,V1],[Out]). input_output_vars(a(Out),[],[Out]). input_output_vars(activate(V,Out),[V],[Out]). input_output_vars(g(V,V1,Out),[V,V1],[Out]). input_output_vars(encArg(V,Out),[V],[Out]). input_output_vars(fun(V,Out),[V],[Out]). input_output_vars(fun1(V,V1,Out),[V,V1],[Out]). input_output_vars(fun2(Out),[],[Out]). input_output_vars(fun3(V,V1,Out),[V,V1],[Out]). input_output_vars(fun4(Out),[],[Out]). input_output_vars(fun5(V,Out),[V],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. non_recursive : [a/1] 1. non_recursive : [activate/2] 2. recursive : [f/3,g/3,h/2] 3. recursive [non_tail,multiple] : [encArg/2] 4. non_recursive : [fun/2] 5. non_recursive : [fun1/3] 6. non_recursive : [fun2/1] 7. non_recursive : [fun3/3] 8. non_recursive : [fun4/1] 9. non_recursive : [fun5/2] 10. non_recursive : [start/2] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into a/1 1. SCC is completely evaluated into other SCCs 2. SCC is partially evaluated into h/2 3. SCC is partially evaluated into encArg/2 4. SCC is partially evaluated into fun/2 5. SCC is partially evaluated into fun1/3 6. SCC is partially evaluated into fun2/1 7. SCC is partially evaluated into fun3/3 8. SCC is completely evaluated into other SCCs 9. SCC is partially evaluated into fun5/2 10. SCC is partially evaluated into start/2 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations a/1 * CE 15 is refined into CE [40] * CE 14 is refined into CE [41] * CE 16 is refined into CE [42] ### Cost equations --> "Loop" of a/1 * CEs [40] --> Loop 16 * CEs [41,42] --> Loop 17 ### Ranking functions of CR a(Out) #### Partial ranking functions of CR a(Out) ### Specialization of cost equations h/2 * CE 17 is refined into CE [43] * CE 18 is refined into CE [44] ### Cost equations --> "Loop" of h/2 * CEs [43,44] --> Loop 18 ### Ranking functions of CR h(V,Out) #### Partial ranking functions of CR h(V,Out) ### Specialization of cost equations encArg/2 * CE 23 is refined into CE [45] * CE 25 is refined into CE [46,47] * CE 24 is refined into CE [48] * CE 26 is refined into CE [49] * CE 22 is refined into CE [50,51] * CE 21 is refined into CE [52,53] * CE 19 is refined into CE [54] * CE 20 is refined into CE [55] ### Cost equations --> "Loop" of encArg/2 * CEs [50,51] --> Loop 19 * CEs [52,53,54,55] --> Loop 20 * CEs [49] --> Loop 21 * CEs [48] --> Loop 22 * CEs [47] --> Loop 23 * CEs [45,46] --> Loop 24 ### Ranking functions of CR encArg(V,Out) * RF of phase [19,20,21,22]: [V] #### Partial ranking functions of CR encArg(V,Out) * Partial RF of phase [19,20,21,22]: - RF of loop [19:1,19:2,20:1,20:2,21:1,22:1]: V ### Specialization of cost equations fun/2 * CE 27 is refined into CE [56,57,58] * CE 28 is refined into CE [59] ### Cost equations --> "Loop" of fun/2 * CEs [56,57,58,59] --> Loop 25 ### Ranking functions of CR fun(V,Out) #### Partial ranking functions of CR fun(V,Out) ### Specialization of cost equations fun1/3 * CE 29 is refined into CE [60,61,62,63,64,65] * CE 30 is refined into CE [66,67,68,69,70,71,72,73] * CE 31 is refined into CE [74,75,76,77,78,79,80,81,82] * CE 32 is refined into CE [83] ### Cost equations --> "Loop" of fun1/3 * CEs [63,77,80] --> Loop 26 * CEs [60,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,78,79,81,82,83] --> Loop 27 ### Ranking functions of CR fun1(V,V1,Out) #### Partial ranking functions of CR fun1(V,V1,Out) ### Specialization of cost equations fun2/1 * CE 33 is refined into CE [84,85] * CE 34 is refined into CE [86] ### Cost equations --> "Loop" of fun2/1 * CEs [85] --> Loop 28 * CEs [84,86] --> Loop 29 ### Ranking functions of CR fun2(Out) #### Partial ranking functions of CR fun2(Out) ### Specialization of cost equations fun3/3 * CE 35 is refined into CE [87,88,89,90,91,92,93,94,95] * CE 36 is refined into CE [96,97,98,99,100,101,102,103,104,105,106,107,108,109] * CE 37 is refined into CE [110] ### Cost equations --> "Loop" of fun3/3 * CEs [90,93,104,105] --> Loop 30 * CEs [87,88,89,91,92,94,95,96,97,98,99,100,101,102,103,106,107,108,109,110] --> Loop 31 ### Ranking functions of CR fun3(V,V1,Out) #### Partial ranking functions of CR fun3(V,V1,Out) ### Specialization of cost equations fun5/2 * CE 38 is refined into CE [111,112,113] * CE 39 is refined into CE [114] ### Cost equations --> "Loop" of fun5/2 * CEs [113] --> Loop 32 * CEs [112,114] --> Loop 33 * CEs [111] --> Loop 34 ### Ranking functions of CR fun5(V,Out) #### Partial ranking functions of CR fun5(V,Out) ### Specialization of cost equations start/2 * CE 1 is refined into CE [115] * CE 2 is refined into CE [116] * CE 3 is refined into CE [117,118] * CE 4 is refined into CE [119,120] * CE 5 is refined into CE [121] * CE 6 is refined into CE [122,123] * CE 7 is refined into CE [124] * CE 8 is refined into CE [125,126,127] * CE 9 is refined into CE [128] * CE 10 is refined into CE [129] * CE 11 is refined into CE [130,131] * CE 12 is refined into CE [132] * CE 13 is refined into CE [133,134,135] ### Cost equations --> "Loop" of start/2 * CEs [115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135] --> Loop 35 ### Ranking functions of CR start(V,V1) #### Partial ranking functions of CR start(V,V1) Computing Bounds ===================================== #### Cost of chains of a(Out): * Chain [17]: 1 with precondition: [Out=0] * Chain [16]: 0 with precondition: [Out=1] #### Cost of chains of h(V,Out): * Chain [18]: 3 with precondition: [Out=0,V>=0] #### Cost of chains of encArg(V,Out): * Chain [24]: 1 with precondition: [Out=0,V>=0] * Chain [23]: 0 with precondition: [V=2,Out=1] * Chain [multiple([19,20,21,22],[[24],[23]])]: 16*it(19)+1*it([24])+0 Such that:it([24]) =< V+1 aux(1) =< V it(19) =< aux(1) with precondition: [1>=Out,Out>=0,V>=2*Out+1] #### Cost of chains of fun(V,Out): * Chain [25]: 1*s(1)+16*s(3)+4 Such that:s(2) =< V s(1) =< V+1 s(3) =< s(2) with precondition: [Out=0,V>=0] #### Cost of chains of fun1(V,V1,Out): * Chain [27]: 9*s(4)+144*s(6)+8*s(7)+128*s(9)+8 Such that:aux(2) =< V aux(3) =< V+1 aux(4) =< V1 aux(5) =< V1+1 s(7) =< aux(3) s(4) =< aux(5) s(9) =< aux(2) s(6) =< aux(4) with precondition: [Out=0,V>=0,V1>=0] * Chain [26]: 2*s(55)+32*s(57)+2 Such that:aux(6) =< V aux(7) =< V+1 s(55) =< aux(7) s(57) =< aux(6) with precondition: [V1=2,Out=0,V>=0] #### Cost of chains of fun2(Out): * Chain [29]: 1 with precondition: [Out=0] * Chain [28]: 0 with precondition: [Out=1] #### Cost of chains of fun3(V,V1,Out): * Chain [31]: 9*s(73)+144*s(75)+6*s(79)+96*s(81)+7 Such that:aux(10) =< V aux(11) =< V+1 aux(12) =< V1 aux(13) =< V1+1 s(79) =< aux(11) s(73) =< aux(13) s(81) =< aux(10) s(75) =< aux(12) with precondition: [Out=0,V>=0,V1>=0] * Chain [30]: 3*s(118)+48*s(120)+5 Such that:aux(14) =< V aux(15) =< V+1 s(118) =< aux(15) s(120) =< aux(14) with precondition: [V1=2,Out=0,V>=0] #### Cost of chains of fun5(V,Out): * Chain [34]: 1 with precondition: [V=2,Out=1] * Chain [33]: 2 with precondition: [Out=0,V>=0] * Chain [32]: 1*s(139)+16*s(141)+1 Such that:s(140) =< V s(139) =< V+1 s(141) =< s(140) with precondition: [1>=Out,Out>=0,V>=2*Out+1] #### Cost of chains of start(V,V1): * Chain [35]: 22*s(142)+352*s(144)+18*s(154)+288*s(155)+8 Such that:aux(18) =< V aux(19) =< V+1 aux(20) =< V1 aux(21) =< V1+1 s(142) =< aux(19) s(144) =< aux(18) s(154) =< aux(21) s(155) =< aux(20) with precondition: [] Closed-form bounds of start(V,V1): ------------------------------------- * Chain [35] with precondition: [] - Upper bound: nat(V)*352+8+nat(V1)*288+nat(V+1)*22+nat(V1+1)*18 - Complexity: n ### Maximum cost of start(V,V1): nat(V)*352+8+nat(V1)*288+nat(V+1)*22+nat(V1+1)*18 Asymptotic class: n * Total analysis performed in 441 ms. ---------------------------------------- (16) BOUNDS(1, n^1)