/export/starexec/sandbox/solver/bin/starexec_run_tct_dci /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?,O(n^2)) * Step 1: NaturalMI. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(X) activate(n__g(X)) -> g(activate(X)) f(X) -> n__f(X) f(n__f(n__a())) -> f(n__g(n__f(n__a()))) g(X) -> n__g(X) - Signature: {a/0,activate/1,f/1,g/1} / {n__a/0,n__f/1,n__g/1} - Obligation: innermost derivational complexity wrt. signature {a,activate,f,g,n__a,n__f,n__g} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = NoUArgs, urules = NoURules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind triangular matrix interpretation: Following symbols are considered usable: all TcT has computed the following interpretation: p(a) = [1] p(activate) = [1] x1 + [2] p(f) = [1] x1 + [2] p(g) = [1] x1 + [0] p(n__a) = [0] p(n__f) = [1] x1 + [1] p(n__g) = [1] x1 + [0] Following rules are strictly oriented: a() = [1] > [0] = n__a() activate(X) = [1] X + [2] > [1] X + [0] = X activate(n__a()) = [2] > [1] = a() activate(n__f(X)) = [1] X + [3] > [1] X + [2] = f(X) f(X) = [1] X + [2] > [1] X + [1] = n__f(X) Following rules are (at-least) weakly oriented: activate(n__g(X)) = [1] X + [2] >= [1] X + [2] = g(activate(X)) f(n__f(n__a())) = [3] >= [3] = f(n__g(n__f(n__a()))) g(X) = [1] X + [0] >= [1] X + [0] = n__g(X) * Step 2: WeightGap. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: activate(n__g(X)) -> g(activate(X)) f(n__f(n__a())) -> f(n__g(n__f(n__a()))) g(X) -> n__g(X) - Weak TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(X) f(X) -> n__f(X) - Signature: {a/0,activate/1,f/1,g/1} / {n__a/0,n__f/1,n__g/1} - Obligation: innermost derivational complexity wrt. signature {a,activate,f,g,n__a,n__f,n__g} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = NoUArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind triangular matrix interpretation: Following symbols are considered usable: all TcT has computed the following interpretation: p(a) = [5] p(activate) = [1] x1 + [0] p(f) = [1] x1 + [0] p(g) = [1] x1 + [1] p(n__a) = [5] p(n__f) = [1] x1 + [0] p(n__g) = [1] x1 + [0] Following rules are strictly oriented: g(X) = [1] X + [1] > [1] X + [0] = n__g(X) Following rules are (at-least) weakly oriented: a() = [5] >= [5] = n__a() activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n__a()) = [5] >= [5] = a() activate(n__f(X)) = [1] X + [0] >= [1] X + [0] = f(X) activate(n__g(X)) = [1] X + [0] >= [1] X + [1] = g(activate(X)) f(X) = [1] X + [0] >= [1] X + [0] = n__f(X) f(n__f(n__a())) = [5] >= [5] = f(n__g(n__f(n__a()))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 3: NaturalMI. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: activate(n__g(X)) -> g(activate(X)) f(n__f(n__a())) -> f(n__g(n__f(n__a()))) - Weak TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(X) f(X) -> n__f(X) g(X) -> n__g(X) - Signature: {a/0,activate/1,f/1,g/1} / {n__a/0,n__f/1,n__g/1} - Obligation: innermost derivational complexity wrt. signature {a,activate,f,g,n__a,n__f,n__g} + Applied Processor: NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = NoUArgs, urules = NoURules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind triangular matrix interpretation: Following symbols are considered usable: all TcT has computed the following interpretation: p(a) = [3] [5] p(activate) = [1 0] x1 + [3] [0 1] [7] p(f) = [1 2] x1 + [3] [0 1] [1] p(g) = [1 0] x1 + [0] [0 0] [3] p(n__a) = [0] [1] p(n__f) = [1 2] x1 + [0] [0 1] [1] p(n__g) = [1 0] x1 + [0] [0 0] [0] Following rules are strictly oriented: f(n__f(n__a())) = [9] [3] > [5] [1] = f(n__g(n__f(n__a()))) Following rules are (at-least) weakly oriented: a() = [3] [5] >= [0] [1] = n__a() activate(X) = [1 0] X + [3] [0 1] [7] >= [1 0] X + [0] [0 1] [0] = X activate(n__a()) = [3] [8] >= [3] [5] = a() activate(n__f(X)) = [1 2] X + [3] [0 1] [8] >= [1 2] X + [3] [0 1] [1] = f(X) activate(n__g(X)) = [1 0] X + [3] [0 0] [7] >= [1 0] X + [3] [0 0] [3] = g(activate(X)) f(X) = [1 2] X + [3] [0 1] [1] >= [1 2] X + [0] [0 1] [1] = n__f(X) g(X) = [1 0] X + [0] [0 0] [3] >= [1 0] X + [0] [0 0] [0] = n__g(X) * Step 4: NaturalMI. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: activate(n__g(X)) -> g(activate(X)) - Weak TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(X) f(X) -> n__f(X) f(n__f(n__a())) -> f(n__g(n__f(n__a()))) g(X) -> n__g(X) - Signature: {a/0,activate/1,f/1,g/1} / {n__a/0,n__f/1,n__g/1} - Obligation: innermost derivational complexity wrt. signature {a,activate,f,g,n__a,n__f,n__g} + Applied Processor: NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = NoUArgs, urules = NoURules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind triangular matrix interpretation: Following symbols are considered usable: all TcT has computed the following interpretation: p(a) = [2] [0] p(activate) = [1 2] x1 + [1] [0 1] [0] p(f) = [1 0] x1 + [1] [0 0] [0] p(g) = [1 0] x1 + [1] [0 1] [1] p(n__a) = [1] [0] p(n__f) = [1 0] x1 + [0] [0 0] [0] p(n__g) = [1 0] x1 + [0] [0 1] [1] Following rules are strictly oriented: activate(n__g(X)) = [1 2] X + [3] [0 1] [1] > [1 2] X + [2] [0 1] [1] = g(activate(X)) Following rules are (at-least) weakly oriented: a() = [2] [0] >= [1] [0] = n__a() activate(X) = [1 2] X + [1] [0 1] [0] >= [1 0] X + [0] [0 1] [0] = X activate(n__a()) = [2] [0] >= [2] [0] = a() activate(n__f(X)) = [1 0] X + [1] [0 0] [0] >= [1 0] X + [1] [0 0] [0] = f(X) f(X) = [1 0] X + [1] [0 0] [0] >= [1 0] X + [0] [0 0] [0] = n__f(X) f(n__f(n__a())) = [2] [0] >= [2] [0] = f(n__g(n__f(n__a()))) g(X) = [1 0] X + [1] [0 1] [1] >= [1 0] X + [0] [0 1] [1] = n__g(X) * Step 5: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(X) activate(n__g(X)) -> g(activate(X)) f(X) -> n__f(X) f(n__f(n__a())) -> f(n__g(n__f(n__a()))) g(X) -> n__g(X) - Signature: {a/0,activate/1,f/1,g/1} / {n__a/0,n__f/1,n__g/1} - Obligation: innermost derivational complexity wrt. signature {a,activate,f,g,n__a,n__f,n__g} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^2))