/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 238 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y)) -> cons(Y) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(cons(x_1)) -> cons(encArg(x_1)) encArg(recip(x_1)) -> recip(encArg(x_1)) encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(cons_terms(x_1)) -> terms(encArg(x_1)) encArg(cons_sqr(x_1)) -> sqr(encArg(x_1)) encArg(cons_dbl(x_1)) -> dbl(encArg(x_1)) encArg(cons_add(x_1, x_2)) -> add(encArg(x_1), encArg(x_2)) encArg(cons_first(x_1, x_2)) -> first(encArg(x_1), encArg(x_2)) encode_terms(x_1) -> terms(encArg(x_1)) encode_cons(x_1) -> cons(encArg(x_1)) encode_recip(x_1) -> recip(encArg(x_1)) encode_sqr(x_1) -> sqr(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_add(x_1, x_2) -> add(encArg(x_1), encArg(x_2)) encode_dbl(x_1) -> dbl(encArg(x_1)) encode_first(x_1, x_2) -> first(encArg(x_1), encArg(x_2)) encode_nil -> nil ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y)) -> cons(Y) The (relative) TRS S consists of the following rules: encArg(cons(x_1)) -> cons(encArg(x_1)) encArg(recip(x_1)) -> recip(encArg(x_1)) encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(cons_terms(x_1)) -> terms(encArg(x_1)) encArg(cons_sqr(x_1)) -> sqr(encArg(x_1)) encArg(cons_dbl(x_1)) -> dbl(encArg(x_1)) encArg(cons_add(x_1, x_2)) -> add(encArg(x_1), encArg(x_2)) encArg(cons_first(x_1, x_2)) -> first(encArg(x_1), encArg(x_2)) encode_terms(x_1) -> terms(encArg(x_1)) encode_cons(x_1) -> cons(encArg(x_1)) encode_recip(x_1) -> recip(encArg(x_1)) encode_sqr(x_1) -> sqr(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_add(x_1, x_2) -> add(encArg(x_1), encArg(x_2)) encode_dbl(x_1) -> dbl(encArg(x_1)) encode_first(x_1, x_2) -> first(encArg(x_1), encArg(x_2)) encode_nil -> nil Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y)) -> cons(Y) The (relative) TRS S consists of the following rules: encArg(cons(x_1)) -> cons(encArg(x_1)) encArg(recip(x_1)) -> recip(encArg(x_1)) encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(cons_terms(x_1)) -> terms(encArg(x_1)) encArg(cons_sqr(x_1)) -> sqr(encArg(x_1)) encArg(cons_dbl(x_1)) -> dbl(encArg(x_1)) encArg(cons_add(x_1, x_2)) -> add(encArg(x_1), encArg(x_2)) encArg(cons_first(x_1, x_2)) -> first(encArg(x_1), encArg(x_2)) encode_terms(x_1) -> terms(encArg(x_1)) encode_cons(x_1) -> cons(encArg(x_1)) encode_recip(x_1) -> recip(encArg(x_1)) encode_sqr(x_1) -> sqr(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_add(x_1, x_2) -> add(encArg(x_1), encArg(x_2)) encode_dbl(x_1) -> dbl(encArg(x_1)) encode_first(x_1, x_2) -> first(encArg(x_1), encArg(x_2)) encode_nil -> nil Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y)) -> cons(Y) The (relative) TRS S consists of the following rules: encArg(cons(x_1)) -> cons(encArg(x_1)) encArg(recip(x_1)) -> recip(encArg(x_1)) encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(cons_terms(x_1)) -> terms(encArg(x_1)) encArg(cons_sqr(x_1)) -> sqr(encArg(x_1)) encArg(cons_dbl(x_1)) -> dbl(encArg(x_1)) encArg(cons_add(x_1, x_2)) -> add(encArg(x_1), encArg(x_2)) encArg(cons_first(x_1, x_2)) -> first(encArg(x_1), encArg(x_2)) encode_terms(x_1) -> terms(encArg(x_1)) encode_cons(x_1) -> cons(encArg(x_1)) encode_recip(x_1) -> recip(encArg(x_1)) encode_sqr(x_1) -> sqr(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_add(x_1, x_2) -> add(encArg(x_1), encArg(x_2)) encode_dbl(x_1) -> dbl(encArg(x_1)) encode_first(x_1, x_2) -> first(encArg(x_1), encArg(x_2)) encode_nil -> nil Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence add(s(X), Y) ->^+ s(add(X, Y)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / s(X)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y)) -> cons(Y) The (relative) TRS S consists of the following rules: encArg(cons(x_1)) -> cons(encArg(x_1)) encArg(recip(x_1)) -> recip(encArg(x_1)) encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(cons_terms(x_1)) -> terms(encArg(x_1)) encArg(cons_sqr(x_1)) -> sqr(encArg(x_1)) encArg(cons_dbl(x_1)) -> dbl(encArg(x_1)) encArg(cons_add(x_1, x_2)) -> add(encArg(x_1), encArg(x_2)) encArg(cons_first(x_1, x_2)) -> first(encArg(x_1), encArg(x_2)) encode_terms(x_1) -> terms(encArg(x_1)) encode_cons(x_1) -> cons(encArg(x_1)) encode_recip(x_1) -> recip(encArg(x_1)) encode_sqr(x_1) -> sqr(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_add(x_1, x_2) -> add(encArg(x_1), encArg(x_2)) encode_dbl(x_1) -> dbl(encArg(x_1)) encode_first(x_1, x_2) -> first(encArg(x_1), encArg(x_2)) encode_nil -> nil Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y)) -> cons(Y) The (relative) TRS S consists of the following rules: encArg(cons(x_1)) -> cons(encArg(x_1)) encArg(recip(x_1)) -> recip(encArg(x_1)) encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(cons_terms(x_1)) -> terms(encArg(x_1)) encArg(cons_sqr(x_1)) -> sqr(encArg(x_1)) encArg(cons_dbl(x_1)) -> dbl(encArg(x_1)) encArg(cons_add(x_1, x_2)) -> add(encArg(x_1), encArg(x_2)) encArg(cons_first(x_1, x_2)) -> first(encArg(x_1), encArg(x_2)) encode_terms(x_1) -> terms(encArg(x_1)) encode_cons(x_1) -> cons(encArg(x_1)) encode_recip(x_1) -> recip(encArg(x_1)) encode_sqr(x_1) -> sqr(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_add(x_1, x_2) -> add(encArg(x_1), encArg(x_2)) encode_dbl(x_1) -> dbl(encArg(x_1)) encode_first(x_1, x_2) -> first(encArg(x_1), encArg(x_2)) encode_nil -> nil Rewrite Strategy: INNERMOST