/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(INF, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 556 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) InfiniteLowerBoundProof [FINISHED, 28 ms] (8) BOUNDS(INF, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: pairNs -> cons(0, n__incr(oddNs)) oddNs -> incr(pairNs) incr(cons(X, XS)) -> cons(s(X), n__incr(activate(XS))) take(0, XS) -> nil take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS))) zip(nil, XS) -> nil zip(X, nil) -> nil zip(cons(X, XS), cons(Y, YS)) -> cons(pair(X, Y), n__zip(activate(XS), activate(YS))) tail(cons(X, XS)) -> activate(XS) repItems(nil) -> nil repItems(cons(X, XS)) -> cons(X, n__cons(X, n__repItems(activate(XS)))) incr(X) -> n__incr(X) take(X1, X2) -> n__take(X1, X2) zip(X1, X2) -> n__zip(X1, X2) cons(X1, X2) -> n__cons(X1, X2) repItems(X) -> n__repItems(X) activate(n__incr(X)) -> incr(X) activate(n__take(X1, X2)) -> take(X1, X2) activate(n__zip(X1, X2)) -> zip(X1, X2) activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__repItems(X)) -> repItems(X) activate(X) -> X S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(n__incr(x_1)) -> n__incr(encArg(x_1)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(n__take(x_1, x_2)) -> n__take(encArg(x_1), encArg(x_2)) encArg(pair(x_1, x_2)) -> pair(encArg(x_1), encArg(x_2)) encArg(n__zip(x_1, x_2)) -> n__zip(encArg(x_1), encArg(x_2)) encArg(n__cons(x_1, x_2)) -> n__cons(encArg(x_1), encArg(x_2)) encArg(n__repItems(x_1)) -> n__repItems(encArg(x_1)) encArg(cons_pairNs) -> pairNs encArg(cons_oddNs) -> oddNs encArg(cons_incr(x_1)) -> incr(encArg(x_1)) encArg(cons_take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(cons_zip(x_1, x_2)) -> zip(encArg(x_1), encArg(x_2)) encArg(cons_tail(x_1)) -> tail(encArg(x_1)) encArg(cons_repItems(x_1)) -> repItems(encArg(x_1)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_pairNs -> pairNs encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_n__incr(x_1) -> n__incr(encArg(x_1)) encode_oddNs -> oddNs encode_incr(x_1) -> incr(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_n__take(x_1, x_2) -> n__take(encArg(x_1), encArg(x_2)) encode_zip(x_1, x_2) -> zip(encArg(x_1), encArg(x_2)) encode_pair(x_1, x_2) -> pair(encArg(x_1), encArg(x_2)) encode_n__zip(x_1, x_2) -> n__zip(encArg(x_1), encArg(x_2)) encode_tail(x_1) -> tail(encArg(x_1)) encode_repItems(x_1) -> repItems(encArg(x_1)) encode_n__cons(x_1, x_2) -> n__cons(encArg(x_1), encArg(x_2)) encode_n__repItems(x_1) -> n__repItems(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: pairNs -> cons(0, n__incr(oddNs)) oddNs -> incr(pairNs) incr(cons(X, XS)) -> cons(s(X), n__incr(activate(XS))) take(0, XS) -> nil take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS))) zip(nil, XS) -> nil zip(X, nil) -> nil zip(cons(X, XS), cons(Y, YS)) -> cons(pair(X, Y), n__zip(activate(XS), activate(YS))) tail(cons(X, XS)) -> activate(XS) repItems(nil) -> nil repItems(cons(X, XS)) -> cons(X, n__cons(X, n__repItems(activate(XS)))) incr(X) -> n__incr(X) take(X1, X2) -> n__take(X1, X2) zip(X1, X2) -> n__zip(X1, X2) cons(X1, X2) -> n__cons(X1, X2) repItems(X) -> n__repItems(X) activate(n__incr(X)) -> incr(X) activate(n__take(X1, X2)) -> take(X1, X2) activate(n__zip(X1, X2)) -> zip(X1, X2) activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__repItems(X)) -> repItems(X) activate(X) -> X The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(n__incr(x_1)) -> n__incr(encArg(x_1)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(n__take(x_1, x_2)) -> n__take(encArg(x_1), encArg(x_2)) encArg(pair(x_1, x_2)) -> pair(encArg(x_1), encArg(x_2)) encArg(n__zip(x_1, x_2)) -> n__zip(encArg(x_1), encArg(x_2)) encArg(n__cons(x_1, x_2)) -> n__cons(encArg(x_1), encArg(x_2)) encArg(n__repItems(x_1)) -> n__repItems(encArg(x_1)) encArg(cons_pairNs) -> pairNs encArg(cons_oddNs) -> oddNs encArg(cons_incr(x_1)) -> incr(encArg(x_1)) encArg(cons_take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(cons_zip(x_1, x_2)) -> zip(encArg(x_1), encArg(x_2)) encArg(cons_tail(x_1)) -> tail(encArg(x_1)) encArg(cons_repItems(x_1)) -> repItems(encArg(x_1)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_pairNs -> pairNs encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_n__incr(x_1) -> n__incr(encArg(x_1)) encode_oddNs -> oddNs encode_incr(x_1) -> incr(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_n__take(x_1, x_2) -> n__take(encArg(x_1), encArg(x_2)) encode_zip(x_1, x_2) -> zip(encArg(x_1), encArg(x_2)) encode_pair(x_1, x_2) -> pair(encArg(x_1), encArg(x_2)) encode_n__zip(x_1, x_2) -> n__zip(encArg(x_1), encArg(x_2)) encode_tail(x_1) -> tail(encArg(x_1)) encode_repItems(x_1) -> repItems(encArg(x_1)) encode_n__cons(x_1, x_2) -> n__cons(encArg(x_1), encArg(x_2)) encode_n__repItems(x_1) -> n__repItems(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: pairNs -> cons(0, n__incr(oddNs)) oddNs -> incr(pairNs) incr(cons(X, XS)) -> cons(s(X), n__incr(activate(XS))) take(0, XS) -> nil take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS))) zip(nil, XS) -> nil zip(X, nil) -> nil zip(cons(X, XS), cons(Y, YS)) -> cons(pair(X, Y), n__zip(activate(XS), activate(YS))) tail(cons(X, XS)) -> activate(XS) repItems(nil) -> nil repItems(cons(X, XS)) -> cons(X, n__cons(X, n__repItems(activate(XS)))) incr(X) -> n__incr(X) take(X1, X2) -> n__take(X1, X2) zip(X1, X2) -> n__zip(X1, X2) cons(X1, X2) -> n__cons(X1, X2) repItems(X) -> n__repItems(X) activate(n__incr(X)) -> incr(X) activate(n__take(X1, X2)) -> take(X1, X2) activate(n__zip(X1, X2)) -> zip(X1, X2) activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__repItems(X)) -> repItems(X) activate(X) -> X The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(n__incr(x_1)) -> n__incr(encArg(x_1)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(n__take(x_1, x_2)) -> n__take(encArg(x_1), encArg(x_2)) encArg(pair(x_1, x_2)) -> pair(encArg(x_1), encArg(x_2)) encArg(n__zip(x_1, x_2)) -> n__zip(encArg(x_1), encArg(x_2)) encArg(n__cons(x_1, x_2)) -> n__cons(encArg(x_1), encArg(x_2)) encArg(n__repItems(x_1)) -> n__repItems(encArg(x_1)) encArg(cons_pairNs) -> pairNs encArg(cons_oddNs) -> oddNs encArg(cons_incr(x_1)) -> incr(encArg(x_1)) encArg(cons_take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(cons_zip(x_1, x_2)) -> zip(encArg(x_1), encArg(x_2)) encArg(cons_tail(x_1)) -> tail(encArg(x_1)) encArg(cons_repItems(x_1)) -> repItems(encArg(x_1)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_pairNs -> pairNs encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_n__incr(x_1) -> n__incr(encArg(x_1)) encode_oddNs -> oddNs encode_incr(x_1) -> incr(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_n__take(x_1, x_2) -> n__take(encArg(x_1), encArg(x_2)) encode_zip(x_1, x_2) -> zip(encArg(x_1), encArg(x_2)) encode_pair(x_1, x_2) -> pair(encArg(x_1), encArg(x_2)) encode_n__zip(x_1, x_2) -> n__zip(encArg(x_1), encArg(x_2)) encode_tail(x_1) -> tail(encArg(x_1)) encode_repItems(x_1) -> repItems(encArg(x_1)) encode_n__cons(x_1, x_2) -> n__cons(encArg(x_1), encArg(x_2)) encode_n__repItems(x_1) -> n__repItems(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: pairNs -> cons(0, n__incr(oddNs)) oddNs -> incr(pairNs) incr(cons(X, XS)) -> cons(s(X), n__incr(activate(XS))) take(0, XS) -> nil take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS))) zip(nil, XS) -> nil zip(X, nil) -> nil zip(cons(X, XS), cons(Y, YS)) -> cons(pair(X, Y), n__zip(activate(XS), activate(YS))) tail(cons(X, XS)) -> activate(XS) repItems(nil) -> nil repItems(cons(X, XS)) -> cons(X, n__cons(X, n__repItems(activate(XS)))) incr(X) -> n__incr(X) take(X1, X2) -> n__take(X1, X2) zip(X1, X2) -> n__zip(X1, X2) cons(X1, X2) -> n__cons(X1, X2) repItems(X) -> n__repItems(X) activate(n__incr(X)) -> incr(X) activate(n__take(X1, X2)) -> take(X1, X2) activate(n__zip(X1, X2)) -> zip(X1, X2) activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__repItems(X)) -> repItems(X) activate(X) -> X The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(n__incr(x_1)) -> n__incr(encArg(x_1)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(n__take(x_1, x_2)) -> n__take(encArg(x_1), encArg(x_2)) encArg(pair(x_1, x_2)) -> pair(encArg(x_1), encArg(x_2)) encArg(n__zip(x_1, x_2)) -> n__zip(encArg(x_1), encArg(x_2)) encArg(n__cons(x_1, x_2)) -> n__cons(encArg(x_1), encArg(x_2)) encArg(n__repItems(x_1)) -> n__repItems(encArg(x_1)) encArg(cons_pairNs) -> pairNs encArg(cons_oddNs) -> oddNs encArg(cons_incr(x_1)) -> incr(encArg(x_1)) encArg(cons_take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(cons_zip(x_1, x_2)) -> zip(encArg(x_1), encArg(x_2)) encArg(cons_tail(x_1)) -> tail(encArg(x_1)) encArg(cons_repItems(x_1)) -> repItems(encArg(x_1)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_pairNs -> pairNs encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_n__incr(x_1) -> n__incr(encArg(x_1)) encode_oddNs -> oddNs encode_incr(x_1) -> incr(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_n__take(x_1, x_2) -> n__take(encArg(x_1), encArg(x_2)) encode_zip(x_1, x_2) -> zip(encArg(x_1), encArg(x_2)) encode_pair(x_1, x_2) -> pair(encArg(x_1), encArg(x_2)) encode_n__zip(x_1, x_2) -> n__zip(encArg(x_1), encArg(x_2)) encode_tail(x_1) -> tail(encArg(x_1)) encode_repItems(x_1) -> repItems(encArg(x_1)) encode_n__cons(x_1, x_2) -> n__cons(encArg(x_1), encArg(x_2)) encode_n__repItems(x_1) -> n__repItems(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) InfiniteLowerBoundProof (FINISHED) The following loop proves infinite runtime complexity: The rewrite sequence oddNs ->^+ incr(cons(0, n__incr(oddNs))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0,1,0]. The pumping substitution is [ ]. The result substitution is [ ]. ---------------------------------------- (8) BOUNDS(INF, INF)